Efficient Solution for the TSP#
This example showcases a few tweeks for the solution of the traveling salesman problem presented in the tutorial. We recommend checking the general idea out before returning for the optimized version here
import numpy as np
from qrisp import *
city_amount = 4
distance_matrix = np.array([[0, 0.25, 0.125, 0.5],
[0.25, 0, 0.625, 0.375],
[0.125, 0.625, 0, 0.75],
[0.5, 0.375, 0.75, 0]])/4
#Create a function that generates a state of superposition of all permutations
def swap_to_front(qa, index):
with invert():
#The keyword ctrl_method = "gray_pt" allows the controlled swaps to be synthesized
#using Margolus gates. These gates perform the same operation as a regular Toffoli
#but add a different phase for each input. This phase will not matter though,
#since it will be reverted once the ancilla values of the oracle are uncomputed.
demux(qa[0], index, qa, permit_mismatching_size = True, ctrl_method = "gray_pt")
def eval_perm(perm_specifiers):
N = len(perm_specifiers)
#To filter out the cyclic permutations, we impose that the first city is always city 0
#We will have to consider this assumption later when calculating the route distance
#by manually adding the trip distance of the first trip (from city 0) and the
#last trip (to city 0)
qa = QuantumArray(QuantumFloat(int(np.ceil(np.log2(city_amount)))), city_amount-1)
qa[:] = np.arange(1, city_amount)
for i in range(N):
swap_to_front(qa[i:], perm_specifiers[i])
return qa
#Create function that returns QuantumFloats specifying the permutations (these will be in uniform superposition)
def create_perm_specifiers(city_amount, init_seq = None):
perm_specifiers = []
for i in range(city_amount - 1):
qf_size = int(np.ceil(np.log2(city_amount-i)))
if i == 0:
continue
temp_qf = QuantumFloat(qf_size)
if not init_seq is None:
temp_qf[:] = init_seq[i-1]
perm_specifiers.append(temp_qf)
return perm_specifiers
#Create function that evaluates if a certain permutation is below a certain distance
#First implement distance function
@as_hamiltonian
def trip_distance(i, j, iter = 1):
return distance_matrix[i, j]*2*np.pi*iter
@as_hamiltonian
def distance_to_0(j, iter = 1):
return distance_matrix[0, j]*2*np.pi*iter
def phase_apply_summed_distance(itinerary, iter = 1):
#Add the distance of the first trip
distance_to_0(itinerary[0], iter = iter)
#Add the distance of the last trip
distance_to_0(itinerary[-1], iter = iter)
#Add the remaining trips
for i in range(city_amount -2):
trip_distance(itinerary[i], itinerary[i+1], iter = iter)
@lifted
def qpe_calc_perm_travel_distance(itinerary, precision):
if precision is None:
raise Exception("Tried to evaluate oracle without specifying a precision")
return QPE(itinerary, phase_apply_summed_distance, precision = precision, iter_spec = True)
def qdict_calc_perm_travel_distance(itinerary, precision):
#A QuantumFloat with n qubits and exponent -n
#can represent values between 0 and 1
res = QuantumFloat(precision, -precision)
#Fill QuantumDictionary
qd = QuantumDictionary(return_type = res)
for i in range(city_amount):
for j in range(city_amount):
qd[(i, j)] = distance_matrix[i, j]
#This dictionary contains the distances of each city to city 0
qd_to_zero = QuantumDictionary(return_type = res)
for i in range(city_amount):
qd_to_zero[i] = distance_matrix[0, i]
#The distance of the first trip is acquired by loading from qd_to_zero
res = qd_to_zero[itinerary[0]]
#Add the distance of the final trip
final_trip_distance = qd_to_zero[itinerary[-1]]
res += final_trip_distance
final_trip_distance.uncompute(recompute = True)
#Evaluate result
for i in range(city_amount-2):
trip_distance = qd[itinerary[i], itinerary[(i+1)%city_amount]]
res += trip_distance
trip_distance.uncompute(recompute = True)
return res
@auto_uncompute
def eval_distance_threshold(perm_specifiers, precision, threshold, method = "qpe"):
itinerary = eval_perm(perm_specifiers)
if method == "qdict":
distance = qdict_calc_perm_travel_distance(itinerary, precision)
elif method == "qpe":
distance = qpe_calc_perm_travel_distance(itinerary, precision)
else:
raise Exception(f"Don't know method {method}")
is_below_treshold = (distance <= threshold)
z(is_below_treshold)
#Create permutation specifiers
perm_specifiers = create_perm_specifiers(city_amount)
# eval_distance_threshold(perm_specifiers, 5, 0.53125)
from qrisp.grover import grovers_alg
from math import factorial
winner_state_amount = 2**sum([qv.size for qv in perm_specifiers])/factorial(city_amount-2)#average number of state per permutation * (4 cyclic shifts)*(2 directions)
#Evaluate Grovers algorithm
grovers_alg(perm_specifiers, #Permutation specifiers
eval_distance_threshold, #Oracle function
kwargs = {"threshold" : 0.4, "precision" : 5, "method" : "qpe"}, #Specify the keyword arguments for the Oracle
winner_state_amount = winner_state_amount) #Specify the estimated amount of winners
#Retrieve measurement
res = multi_measurement(perm_specifiers)
Find the resulting permutation
>>> res
{(0, 1): 0.4992, (1, 1): 0.4992}
>>> winning_specifiers = create_perm_specifiers(city_amount)
>>> winning_specifiers[0][:] = 0
>>> winning_specifiers[1][:] = 1
>>> winning_permutation = eval_perm(winning_specifiers)
>>> winning_permutation.most_likely()
OutcomeArray([1, 3, 2])
Together with our assumption that the first city is always 0, this is the same result as in the tutorial. Finaly, we perform some benchmarking:
>>> qpe_compiled_qc = perm_specifiers[0].qs.compile()
>>> qpe_compiled_qc.depth()
2728
>>> qpe_compiled_qc.cnot_count()
2140
>>> qpe_compiled_qc.num_qubits()
17
For the QuantumDictionary based route distance evaluation we get
>>> qdict_compiled_qc = perm_specifiers[0].qs.compile()
>>> qdict_compiled_qc.depth()
750
>>> qdict_compiled_qc.cnot_count()
1152
>>> qdict_compiled_qc.num_qubits()
19