qrisp.cold.DCQOProblem.run#
- DCQOProblem.run(qarg, N_steps, T, method, N_opt=None, CRAB=False, optimizer='COBYQA', objective='agp_coeff_magnitude', bounds=(), options={}, mes_kwargs={})[source]#
Run the specific DCQO problem instance with given quantum arguments, number of timesteps and evolution time.
- Parameters:
- qargQuantumVariable
The argument to which the DCQO circuit is applied.
- N_stepsint
Number of time steps for the simulation.
- Tfloat
Evolution time for the simulation.
- methodstr
Method to solve the QUBO with. Either
LCDorCOLD.- N_optint
Number of optimization parameters in
H_control.- CRABbool
If
True, the CRAB optimization method is being used. The default isFalse.- optimizerstr, optional
Specifies the SciPy optimization routine. We set the default to
Powell.- optionsdict
A dictionary of solver options.
- objectivestr
The objective function to be minimized (
exp_value,agp_coeff_magnitude). Default isagp_coeff_magnitude.- boundstuple
The parameter bounds for the optimizer. Default is (-2, 2).
- optionsdict
Additional options for the Scipy solver.
- mes_kwargsdict, optional
The keyword arguments for the measurement function. Default is an empty dictionary.
- backendBackendClient, optional
The backend to be used for the quantum simulation. By default, the Qrisp simulator is used.
- shots:int
The number of shots. The default is 5000.
- Returns:
- res_dictdict
The optimal result after running DCQO problem for a specific problem instance. It contains the measurement results after applying the optimal DCQO circuit to the quantum argument.