GMSEnvironment#
- class GMSEnvironment[source]#
This environment provides a convenient interface for constructing quantum algorithms using the Ion-trap native GMS gates. GMS gates allow entangling more than 2 qubits in a single step and can therefore boost performance in many situations. For more information on GMS gates consult https://arxiv.org/abs/quant-ph/9810040 . The techniques for converting the circuits presented to this environment are mostly based on https://ieeexplore.ieee.org/document/9815035 .
This environment allows to code blocks of phase-only gates as we are used to but compiles these blocks to GMS gates.
Examples
We create a function performing the quantum Fourier-transform using GMS gates:
from qrisp import QuantumEnvironment, GMSEnvironment, h, cp, swap import numpy as np def QFT(qv, use_gms = False): n = qv.size if use_gms: env = GMSEnvironment else: env = QuantumEnvironment for i in range(n): h(qv[i]) if i == n-1: break with env(): #This is the block which converted to GMS gates #We can only use the gates p, cp and rz in here for k in range(n-i-1): cp(2*np.pi/2**(k+2), qv[k+i+1], qv[i]) for i in range(n//2): swap(qv[i], qv[n-i-1])
We inspect the resulting quantum circuit:
>>> from qrisp import QuantumFloat, invert >>> qf = QuantumFloat(5) >>> qf[:] = 13 >>> QFT(qf, use_gms = True) >>> print(qf.qs)
QuantumCircuit: -------------- ┌───┐┌───┐┌─────────────────────┐ » qf.0: ┤ X ├┤ H ├┤0 ├─────────────────────────────────» └───┘└───┘│ │┌───┐┌─────────────────────┐ » qf.1: ──────────┤1 ├┤ H ├┤0 ├─────» ┌───┐ │ │└───┘│ │┌───┐» qf.2: ┤ X ├─────┤2 GXX converted gate ├─────┤1 ├┤ H ├» ├───┤ │ │ │ GXX converted gate │└───┘» qf.3: ┤ X ├─────┤3 ├─────┤2 ├─────» └───┘ │ │ │ │ » qf.4: ──────────┤4 ├─────┤3 ├─────» └─────────────────────┘ └─────────────────────┘ » « «qf.0: ─────────────────────────────────────────────────────────X─ « │ «qf.1: ─────────────────────────────────────────────────────X───┼─ « ┌─────────────────────┐ │ │ «qf.2: ┤0 ├──────────────────────────────┼───┼─ « │ │┌───┐┌─────────────────────┐ │ │ «qf.3: ┤1 GXX converted gate ├┤ H ├┤0 ├──X───┼─ « │ │└───┘│ GXX converted gate │┌───┐ │ «qf.4: ┤2 ├─────┤1 ├┤ H ├─X─ « └─────────────────────┘ └─────────────────────┘└───┘ Live QuantumVariables: --------------------- QuantumFloat qf
Now we check that the GMS version indeed performs the same operation as the CNOT version by performing the inverse of the CNOT version.
>>> with invert(): QFT(qf, use_gms = False) >>> print(qf) {13: 1.0}