qrisp.operators.fermionic.FermionicOperator.trotterization#
- FermionicOperator.trotterization(forward_evolution=True)[source]#
Returns a function for performing Hamiltonian simulation, i.e., approximately implementing the unitary operator \(U(t) = e^{-itH}\) via Trotterization. Note that this method will always simulate the hermitized operator, i.e.
\[H = (O + O^\dagger)/2\]- Parameters:
- forward_evolution, bool, optional
If set to False \(U(t)^\dagger = e^{itH}\) will be executed (usefull for quantum phase estimation). The default is True.
- Returns:
- Ufunction
A Python function that implements the first order Suzuki-Trotter formula. Given a Hamiltonian \(H=H_1+\dotsb +H_m\) the unitary evolution \(e^{-itH}\) is approximated by
\[e^{-itH}\approx U(t,N)=\left(e^{-iH_1t/N}\dotsb e^{-iH_mt/N}\right)^N\]This function recieves the following arguments:
- qargQuantumVariable or QuantumArray
The quantum argument.
- tfloat, optional
The evolution time \(t\). The default is 1.
- stepsint, optional
The number of Trotter steps \(N\). The default is 1.
- iterint, optional
The number of iterations the unitary \(U(t,N)\) is applied. The default is 1.
Examples
We simulate a simple FermionicOperator.
>>> from sympy import Symbol >>> from qrisp.operators import a,c >>> from qrisp import QuantumVariable >>> O = a(0)*a(1) + a(2) >>> U = O.trotterization() >>> qv = QuantumVariable(3) >>> t = Symbol("t") >>> U(qv, t = t) >>> print(qv.qs) QuantumCircuit: --------------- ┌───┐ ┌───┐┌────────────┐┌───┐ ┌───┐ qv.0: ────■─┤ X ├─────────────┤ X ├┤ Rz(-0.5*t) ├┤ X ├─────┤ X ├─■──── │ └─┬─┘ ┌───┐ └─┬─┘├────────────┤└─┬─┘┌───┐└─┬─┘ │ qv.1: ─■──┼───■──────┤ H ├──────■──┤ Rz(-0.5*t) ├──■──┤ H ├──■───┼──■─ │ │ ┌───┐┌───┴───┴───┐┌───┐└────────────┘ └───┘ │ │ qv.2: ─■──■─┤ H ├┤ Rz(1.0*t) ├┤ H ├──────────────────────────────■──■─ └───┘└───────────┘└───┘ Live QuantumVariables: ---------------------- QuantumVariable qv
Execute a simulation:
>>> print(qv.get_measurement(subs_dic = {t : 0.5})) {'000': 0.9242, '001': 0.06026, '110': 0.01459, '111': 0.00095}