qrisp.operators.fermionic.FermionicOperator.trotterization#

FermionicOperator.trotterization(forward_evolution=True)[source]#

Returns a function for performing Hamiltonian simulation, i.e., approximately implementing the unitary operator \(U(t) = e^{-itH}\) via Trotterization. Note that this method will always simulate the hermitized operator, i.e.

\[H = (O + O^\dagger)/2\]
Parameters:
forward_evolution, bool, optional

If set to False \(U(t)^\dagger = e^{itH}\) will be executed (usefull for quantum phase estimation). The default is True.

Returns:
Ufunction

A Python function that implements the first order Suzuki-Trotter formula. Given a Hamiltonian \(H=H_1+\dotsb +H_m\) the unitary evolution \(e^{-itH}\) is approximated by

\[e^{-itH}\approx U(t,N)=\left(e^{-iH_1t/N}\dotsb e^{-iH_mt/N}\right)^N\]

This function recieves the following arguments:

  • qargQuantumVariable or QuantumArray

    The quantum argument.

  • tfloat, optional

    The evolution time \(t\). The default is 1.

  • stepsint, optional

    The number of Trotter steps \(N\). The default is 1.

  • iterint, optional

    The number of iterations the unitary \(U(t,N)\) is applied. The default is 1.

Examples

We simulate a simple FermionicOperator.

>>> from sympy import Symbol
>>> from qrisp.operators import a,c
>>> from qrisp import QuantumVariable
>>> O = a(0)*a(1) + a(2)
>>> U = O.trotterization()
>>> qv = QuantumVariable(3)
>>> t = Symbol("t")
>>> U(qv, t = t)
>>> print(qv.qs)
QuantumCircuit:
---------------
            ┌───┐             ┌───┐┌────────────┐┌───┐     ┌───┐      
qv.0: ────■─┤ X ├─────────────┤ X ├┤ Rz(-0.5*t) ├┤ X ├─────┤ X ├─■────
          │ └─┬─┘    ┌───┐    └─┬─┘├────────────┤└─┬─┘┌───┐└─┬─┘ │    
qv.1: ─■──┼───■──────┤ H ├──────■──┤ Rz(-0.5*t) ├──■──┤ H ├──■───┼──■─
       │  │ ┌───┐┌───┴───┴───┐┌───┐└────────────┘     └───┘      │  │ 
qv.2: ─■──■─┤ H ├┤ Rz(1.0*t) ├┤ H ├──────────────────────────────■──■─
            └───┘└───────────┘└───┘                                   
Live QuantumVariables:
----------------------
QuantumVariable qv

Execute a simulation:

>>> print(qv.get_measurement(subs_dic = {t : 0.5}))
{'000': 0.9242, '001': 0.06026, '110': 0.01459, '111': 0.00095}