Source code for qrisp.operators.qubit.qubit_operator
"""\********************************************************************************* Copyright (c) 2024 the Qrisp authors** This program and the accompanying materials are made available under the* terms of the Eclipse Public License 2.0 which is available at* http://www.eclipse.org/legal/epl-2.0.** This Source Code may also be made available under the following Secondary* Licenses when the conditions for such availability set forth in the Eclipse* Public License, v. 2.0 are satisfied: GNU General Public License, version 2* with the GNU Classpath Exception which is* available at https://www.gnu.org/software/classpath/license.html.** SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0********************************************************************************/"""fromitertoolsimportproductimportsympyasspimportnumpyasnpimportjax.numpyasjnpfromqrisp.operators.hamiltonian_toolsimportgroup_up_iterablefromqrisp.operators.hamiltonianimportHamiltonianfromqrisp.operators.qubit.qubit_termimportQubitTermfromqrisp.operators.qubit.measurementimportget_measurementfromqrisp.operators.qubit.commutativity_toolsimportconstruct_change_of_basisfromqrispimportcx,cz,h,s,sx_dg,IterationEnvironment,conjugate,mergefromqrisp.jaspimportcheck_for_tracing_mode,jrangethreshold=1e-9## QubitOperator#
[docs]classQubitOperator(Hamiltonian):r""" This class provides an efficient implementation of QubitOperators, i.e. Operators, that act on a qubit space :math:`(\mathbb{C}^2)^{\otimes n}`. Supported are operators of the following form: .. math:: O=\sum\limits_{j}\alpha_j O_j where :math:`O_j=\bigotimes_i m_i^j` is a product of the following operators: .. list-table:: :header-rows: 1 :widths: 20 40 40 * - Operator - Ket-Bra Realization - Description * - $X$ - :math:`\ket{0}\bra{1} + \ket{1}\bra{0}` - Pauli-X operator (bit flip) * - $Y$ - :math:`-i\ket{0}\bra{1} + i\ket{1}\bra{0}` - Pauli-Y operator (bit flip with phase) * - $Z$ - :math:`\ket{0}\bra{0} - \ket{1}\bra{1}` - Pauli-Z operator (phase flip) * - $A$ - :math:`\ket{0}\bra{1}` - Annihilation operator * - $C$ - :math:`\ket{1}\bra{0}` - Creation operator * - $P_0$ - :math:`\ket{0}\bra{0}` - Projector onto the :math:`\ket{0}` state * - $P_1$ - :math:`\ket{1}\bra{1}` - Projector onto the :math:`\ket{1}` state * - $I$ - :math:`\ket{1}\bra{1} + \ket{0}\bra{0}` - Identity operator If you already have some experience you might wonder why to include the non-Pauli operators - after all they can be represented as a linear combination of ``X``, ``Y`` and ``Z``. .. math:: \begin{align} A_0 C_1 &= (X_0 - i Y_0)(X_1 + Y_1)/4 \\ & = (X_0X_1 + X_0Y_1 - Y_0X_1 + Y_0Y_1)/4 \end{align} Recently, a much more efficient method of simulating ``A`` and ``C`` `has been proposed by Kornell and Selinger <https://arxiv.org/abs/2310.12256>`_, which avoids decomposing these Operators into Paulis strings but instead simulates .. math:: H = A_0C_1 + h.c. within a single step. This idea is deeply integrated into the Operators module of Qrisp. For an example circuit see below. Examples -------- A QubitOperator can be specified conveniently in terms of arithmetic combinations of the mentioned operators: :: from qrisp.operators.qubit import X,Y,Z,A,C,P0,P1 H = 1+2*X(0)+3*X(0)*Y(1)*A(2)+C(4)*P1(0) H Yields $1 + P^1_0C_4 + 2X_0 + 3X_0Y_1A_2$. We create a QubitOperator and perform Hamiltonian simulation via :meth:`trotterization <QubitOperator.trotterization>`: :: from sympy import Symbol from qrisp.operators import A,C,Z,Y from qrisp import QuantumVariable O = A(0)*C(1)*Z(2)*A(3) + Y(3) U = O.trotterization() qv = QuantumVariable(4) t = Symbol("t") U(qv, t = t) >>> print(qv.qs) QuantumCircuit: --------------- ┌───┐ » qv.0: ┤ X ├────────────o──────────────────────────────────────o────────────» └─┬─┘┌───┐ │ │ ┌───┐» qv.1: ──┼──┤ X ├───────■──────────────────────────────────────■───────┤ X ├» │ └─┬─┘ │ │ └─┬─┘» qv.2: ──┼────┼─────────┼────■────────────────────────────■────┼─────────┼──» │ │ ┌───┐ │ ┌─┴─┐ ┌────────────┐ ┌─┴─┐ │ ┌───┐ │ » qv.3: ──■────■──┤ H ├──┼──┤ X ├──■──┤ Rz(-0.5*t) ├──■──┤ X ├──┼──┤ H ├──■──» └───┘┌─┴─┐└───┘┌─┴─┐├───────────┬┘┌─┴─┐└───┘┌─┴─┐└───┘ » hs_anc.0: ───────────────┤ X ├─────┤ X ├┤ Rz(0.5*t) ├─┤ X ├─────┤ X ├──────────» └───┘ └───┘└───────────┘ └───┘ └───┘ » « ┌───┐ « qv.0: ┤ X ├──────────────────────────── « └─┬─┘ « qv.1: ──┼────────────────────────────── « │ « qv.2: ──┼────────────────────────────── « │ ┌────┐┌────────────┐┌──────┐ « qv.3: ──■──┤ √X ├┤ Rz(-2.0*t) ├┤ √Xdg ├ « └────┘└────────────┘└──────┘ «hs_anc.0: ───────────────────────────────── « Live QuantumVariables: ---------------------- QuantumVariable qv Call the simulator: >>> print(qv.get_measurement(subs_dic = {t : 0.5})) {'0000': 0.77015, '0001': 0.22985} """def__init__(self,terms_dict={}):self.terms_dict=dict(terms_dict)deflen(self):returnlen(self.terms_dict)## Printing#def_repr_latex_(self):# Convert the sympy expression to LaTeX and return itexpr=self.to_expr()returnf"${sp.latex(expr)}$"def__str__(self):# Convert the sympy expression to a string and return itexpr=self.to_expr()returnstr(expr)def__repr__(self):# Convert the sympy expression to a string and return itreturnstr(self)defto_expr(self):""" Returns a SymPy expression representing the operator. Returns ------- expr : sympy.expr A SymPy expression representing the operator. """expr=0forterm,coeffinself.terms_dict.items():expr+=coeff*term.to_expr()returnexpr## Arithmetic#def__pow__(self,e):res=1foriinrange(e):res=res*selfreturnresdef__add__(self,other):""" Returns the sum of the operator self and other. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to add to the operator self. Returns ------- result : QubitOperator The sum of the operator self and other. """ifisinstance(other,(int,float,complex)):other=QubitOperator({QubitTerm():other})ifnotisinstance(other,QubitOperator):raiseTypeError("Cannot add QubitOperator and "+str(type(other)))res_terms_dict={}forterm,coeffinself.terms_dict.items():res_terms_dict[term]=res_terms_dict.get(term,0)+coeffifabs(res_terms_dict[term])<threshold:delres_terms_dict[term]forterm,coeffinother.terms_dict.items():res_terms_dict[term]=res_terms_dict.get(term,0)+coeffifabs(res_terms_dict[term])<threshold:delres_terms_dict[term]result=QubitOperator(res_terms_dict)returnresultdef__sub__(self,other):""" Returns the difference of the operator self and other. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to substract from the operator self. Returns ------- result : QubitOperator The difference of the operator self and other. """ifisinstance(other,(int,float,complex)):other=QubitOperator({QubitTerm():other})ifnotisinstance(other,QubitOperator):raiseTypeError("Cannot substract QubitOperator and "+str(type(other)))res_terms_dict={}forterm,coeffinself.terms_dict.items():res_terms_dict[term]=res_terms_dict.get(term,0)+coeffifabs(res_terms_dict[term])<threshold:delres_terms_dict[term]forterm,coeffinother.terms_dict.items():res_terms_dict[term]=res_terms_dict.get(term,0)-coeffifabs(res_terms_dict[term])<threshold:delres_terms_dict[term]result=QubitOperator(res_terms_dict)returnresultdef__rsub__(self,other):""" Returns the difference of the operator other and self. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to substract the operator self from. Returns ------- result : QubitOperator The difference of the operator other and self. """ifisinstance(other,(int,float,complex)):other=QubitOperator({QubitTerm():other})ifnotisinstance(other,QubitOperator):raiseTypeError("Cannot substract QubitOperator and "+str(type(other)))res_terms_dict={}forterm,coeffinself.terms_dict.items():res_terms_dict[term]=res_terms_dict.get(term,0)-coeffifabs(res_terms_dict[term])<threshold:delres_terms_dict[term]forterm,coeffinother.terms_dict.items():res_terms_dict[term]=res_terms_dict.get(term,0)+coeffifabs(res_terms_dict[term])<threshold:delres_terms_dict[term]result=QubitOperator(res_terms_dict)returnresultdef__mul__(self,other):""" Returns the product of the operator self and other. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to multiply with the operator self. Returns ------- result : QubitOperator The product of the operator self and other. """ifisinstance(other,(int,float,complex)):other=QubitOperator({QubitTerm():other})ifnotisinstance(other,QubitOperator):raiseTypeError("Cannot multipliy QubitOperator and "+str(type(other)))res_terms_dict={}forterm1,coeff1inself.terms_dict.items():forterm2,coeff2inother.terms_dict.items():curr_term,curr_coeff=term1*term2res_terms_dict[curr_term]=res_terms_dict.get(curr_term,0)+curr_coeff*coeff1*coeff2result=QubitOperator(res_terms_dict)returnresult__radd__=__add____rmul__=__mul__## Inplace arithmetic#def__iadd__(self,other):""" Adds other to the operator self. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to add to the operator self. """ifisinstance(other,(int,float,complex)):self.terms_dict[QubitTerm()]=self.terms_dict.get(QubitTerm(),0)+otherreturnselfifnotisinstance(other,QubitOperator):raiseTypeError("Cannot add QubitOperator and "+str(type(other)))forterm,coeffinother.terms_dict.items():self.terms_dict[term]=self.terms_dict.get(term,0)+coeffifabs(self.terms_dict[term])<threshold:delself.terms_dict[term]returnselfdef__isub__(self,other):""" Substracts other from the operator self. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to substract from the operator self. """ifisinstance(other,(int,float,complex)):self.terms_dict[QubitTerm()]=self.terms_dict.get(QubitTerm(),0)-otherreturnselfifnotisinstance(other,QubitOperator):raiseTypeError("Cannot add QubitOperator and "+str(type(other)))forterm,coeffinother.terms_dict.items():self.terms_dict[term]=self.terms_dict.get(term,0)-coeffifabs(self.terms_dict[term])<threshold:delself.terms_dict[term]returnselfdef__imul__(self,other):""" Multiplys other to the operator self. Parameters ---------- other : int, float, complex or QubitOperator A scalar or a QubitOperator to multiply with the operator self. """ifisinstance(other,(int,float,complex)):#other = QubitOperator({QubitTerm():other})forterminself.terms_dict:self.terms_dict[term]*=otherreturnselfifnotisinstance(other,QubitOperator):raiseTypeError("Cannot multipliy QubitOperator and "+str(type(other)))res_terms_dict={}forterm1,coeff1inself.terms_dict.items():forterm2,coeff2inother.terms_dict.items():curr_term,curr_coeff=term1*term2res_terms_dict[curr_term]=res_terms_dict.get(curr_term,0)+curr_coeff*coeff1*coeff2self.terms_dict=res_terms_dictreturnself## Substitution#defsubs(self,subs_dict):""" Parameters ---------- subs_dict : dict A dictionary with indices (int) as keys and numbers (int, float, complex) as values. Returns ------- result : QubitOperator The resulting QubitOperator. """res_terms_dict={}forterm,coeffinself.terms_dict.items():curr_term,curr_coeff=term.subs(subs_dict)res_terms_dict[curr_term]=res_terms_dict.get(curr_term,0)+curr_coeff*coeffreturnQubitOperator(res_terms_dict)## Miscellaneous#deffind_minimal_qubit_amount(self):indices=sum([list(term.factor_dict.keys())forterminself.terms_dict.keys()],[])iflen(indices)==0:return0returnmax(indices)+1
[docs]defcommutator(self,other):""" Computes the commutator. .. math:: [A,B] = AB - BA Parameters ---------- other : QubitOperator The second argument of the commutator. Returns ------- commutator : QubitOperator The commutator operator. Examples -------- We compute the commutator of a ladder operator with a Pauli string. >>> from qrisp.operators import A,C,X,Z >>> O_0 = A(0)*C(1)*A(2) >>> O_1 = Z(0)*X(1)*X(1) >>> print(O_0.commutator(O_1)) 2*A_0*C_1*A_2 """res=0forterm_self,coeff_selfinself.terms_dict.items():forterm_other,coeff_otherinother.terms_dict.items():res+=coeff_self*coeff_other*term_self.commutator(term_other)min_coeff_self=min([abs(coeff)forcoeffinself.terms_dict.values()])min_coeff_other=min([abs(coeff)forcoeffinother.terms_dict.values()])res.apply_threshold(min_coeff_self*min_coeff_other/2)returnres
defapply_threshold(self,threshold):""" Removes all terms with coefficient absolute value below the specified threshold. Parameters ---------- threshold : float The threshold for the coefficients of the terms. """delete_list=[]new_terms_dict=dict(self.terms_dict)forterm,coeffinself.terms_dict.items():ifabs(coeff)<=threshold:delete_list.append(term)fortermindelete_list:delnew_terms_dict[term]returnQubitOperator(new_terms_dict)@classmethoddeffrom_matrix(self,matrix):r""" Represents a matrix as an operator .. math:: O=\sum_i\alpha_i\bigotimes_{j=0}^{n-1}O_{ij} where $O_{ij}\in\{A,C,P_0,P_1\}$. Parameters ---------- matrix : numpy.ndarray or scipy.sparse.csr_matrix The matrix. Returns ------- QubitOperator The operator represented by the matrix. Examples -------- :: from scipy.sparse import csr_matrix from qrisp.operators import QubitOperator sparse_matrix = csr_matrix([[0, 5, 0, 1], [5, 0, 0, 0], [0, 0, 0, 2], [1, 0, 2, 0]]) O = QubitOperator.from_matrix(sparse_matrix) print(O) # Yields: A_0*A_1 + C_0*C_1 + 5*P^0_0*A_1 + 5*P^0_0*C_1 + 2*P^1_0*A_1 + 2*P^1_0*C_1 """fromscipy.sparseimportcsr_matrixfromnumpyimportndarrayimportnumpyasnpOPERATOR_TABLE={(0,0):"P0",(0,1):"A",(1,0):"C",(1,1):"P1"}ifisinstance(matrix,ndarray):new_matrix=csr_matrix(matrix)elifisinstance(matrix,csr_matrix):new_matrix=matrix.copy()else:raiseException("Cannot construct QubitOperator from type "+str(type(matrix)))M,N=new_matrix.shapen=max(int(np.ceil(np.log2(M))),int(np.ceil(np.log2(N))))new_matrix.eliminate_zeros()rows,cols=new_matrix.nonzero()values=new_matrix.dataO=QubitOperator({})forrow,col,valueinzip(rows,cols,values):factor_dict={}forkinrange(n):i=(row>>k)&1j=(col>>k)&1factor_dict[n-k-1]=OPERATOR_TABLE[(i,j)]O.terms_dict[QubitTerm(factor_dict)]=valuereturnO@classmethoddeffrom_numpy_array(cls,numpy_array,threshold=np.inf):fromqrisp.operatorsimportX,Y,Zn=int(np.log2(numpy_array.shape[0]))H=0forpauli_indicator_tupleinproduct(range(4),repeat=n):temp_H=1foriinrange(n):ifpauli_indicator_tuple[i]==1:temp_H=X(i)*temp_Hifpauli_indicator_tuple[i]==2:temp_H=Y(i)*temp_Hifpauli_indicator_tuple[i]==3:temp_H=Z(i)*temp_Hifisinstance(temp_H,int)andtemp_H==1:temp_H_array=np.eye(2**n)else:temp_H_array=temp_H.to_array(n)coefficient=np.dot(temp_H_array.flatten().conjugate(),numpy_array.flatten())H+=(coefficient/2**(n))*temp_HreturnH
[docs]@classmethoddeffrom_matrix(self,matrix):r""" Represents a matrix as an operator .. math:: O=\sum_i\alpha_i\bigotimes_{j=0}^{n-1}O_{ij} where $O_{ij}\in\{A,C,P_0,P_1\}$. Parameters ---------- matrix : numpy.ndarray or scipy.sparse.csr_matrix The matrix. Returns ------- QubitOperator The operator represented by the matrix. Examples -------- :: from scipy.sparse import csr_matrix from qrisp.operators import QubitOperator sparse_matrix = csr_matrix([[0, 5, 0, 1], [5, 0, 0, 0], [0, 0, 0, 2], [1, 0, 2, 0]]) O = QubitOperator.from_matrix(sparse_matrix) print(O) # Yields: A_0*A_1 + C_0*C_1 + 5*P^0_0*A_1 + 5*P^0_0*C_1 + 2*P^1_0*A_1 + 2*P^1_0*C_1 """fromscipy.sparseimportcsr_matrixfromnumpyimportndarrayimportnumpyasnpOPERATOR_TABLE={(0,0):"P0",(0,1):"A",(1,0):"C",(1,1):"P1"}ifisinstance(matrix,ndarray):new_matrix=csr_matrix(matrix)elifisinstance(matrix,csr_matrix):new_matrix=matrix.copy()else:raiseException("Cannot construct QubitOperator from type "+str(type(matrix)))M,N=new_matrix.shapen=max(int(np.ceil(np.log2(M))),int(np.ceil(np.log2(N))))new_matrix.eliminate_zeros()rows,cols=new_matrix.nonzero()values=new_matrix.dataO=QubitOperator({})forrow,col,valueinzip(rows,cols,values):factor_dict={}forkinrange(n):i=(row>>k)&1j=(col>>k)&1factor_dict[n-k-1]=OPERATOR_TABLE[(i,j)]O.terms_dict[QubitTerm(factor_dict)]=valuereturnO
[docs]defto_sparse_matrix(self,factor_amount=None):r""" Returns a scipy matrix representing the operator .. math:: O=\sum_i\alpha_i\bigotimes_{j=0}^{n-1}O_{ij} where $O_{ij}\in\{X,Y,Z,A,C,P_0,P_1,I\}$. Parameters ---------- factor_amount : int, optional The amount of factors $n$ to represent this matrix. The matrix will have the dimension $2^n \times 2^n$, where n is the amount of factors. By default the minimal number $n$ is chosen. Returns ------- scipy.sparse.csr_matrix The sparse matrix representing the operator. """importscipy.sparseasspfromscipy.sparseimportkronasTP,csr_matrixdefget_matrix(P):ifP=="I":returncsr_matrix([[1,0],[0,1]])ifP=="X":returncsr_matrix([[0,1],[1,0]])ifP=="Y":returncsr_matrix([[0,-1j],[1j,0]])ifP=="Z":returncsr_matrix([[1,0],[0,-1]])ifP=="A":returncsr_matrix([[0,1],[0,0]])ifP=="C":returncsr_matrix([[0,0],[1,0]])ifP=="P0":returncsr_matrix([[1,0],[0,0]])ifP=="P1":returncsr_matrix([[0,0],[0,1]])defrecursive_TP(keys,term_dict):iflen(keys)==1:returnget_matrix(term_dict.get(keys[0],"I"))returnTP(get_matrix(term_dict.get(keys.pop(0),"I")),recursive_TP(keys,term_dict))term_dicts=[]coeffs=[]participating_indices=set()forterm,coeffinself.terms_dict.items():curr_dict=term.factor_dictterm_dicts.append(curr_dict)coeffs.append(coeff)participating_indices=participating_indices.union(term.non_trivial_indices())iffactor_amountisNone:iflen(participating_indices):factor_amount=max(participating_indices)+1else:res=1M=sp.csr_matrix((1,1))forcoeffincoeffs:res*=coeffiflen(coeffs):M[0,0]=resreturnMelifparticipating_indicesandfactor_amount<max(participating_indices)+1:raiseException("Tried to construct matrix with insufficient factor_amount")keys=list(range(factor_amount))dim=len(keys)m=len(coeffs)M=sp.csr_matrix((2**dim,2**dim))forkinrange(m):M+=complex(coeffs[k])*recursive_TP(keys.copy(),term_dicts[k])# res = ((M + M.transpose().conjugate())/2)# res.sum_duplicates()returnM
[docs]defto_array(self,factor_amount=None):r""" Returns a numpy array representing the operator .. math:: O=\sum_i\alpha_i\bigotimes_{j=0}^{n-1}O_{ij} where $O_{ij}\in\{X,Y,Z,A,C,P_0,P_1,I\}$. Parameters ---------- factor_amount : int, optional The amount of factors $n$ to represent this matrix. The matrix will have the dimension $2^n \times 2^n$, where n is the amount of factors. By default the minimal number $n$ is chosen. Returns ------- np.ndarray The array representing the operator. Examples -------- >>> from qrisp.operators import * >>> O = X(0)*X(1) + 2*P0(0)*P0(1) + 3*P1(0)*P1(1) >>> O.to_array() matrix([[2.+0.j, 0.+0.j, 0.+0.j, 1.+0.j], [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j], [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j], [1.+0.j, 0.+0.j, 0.+0.j, 3.+0.j]]) """returnnp.array(self.to_sparse_matrix(factor_amount).todense())
[docs]defto_pauli(self):""" Returns an equivalent operator, which however only contains Pauli factors. Returns ------- QubitOperator An operator that contains only Pauli factors. Examples -------- We create a QubitOperator containing A and C terms and convert it to a Pauli based representation. >>> from qrisp.operators import A,C,Z >>> H = A(0)*C(1)*Z(2) >>> print(H.to_pauli()) 0.25*X_0*X_1*Z_2 + 0.25*I*X_0*Y_1*Z_2 - 0.25*I*Y_0*X_1*Z_2 + 0.25*Y_0*Y_1*Z_2 """res=0forterm,coeffinself.terms_dict.items():res+=coeff*term.to_pauli()ifisinstance(res,(float,int)):returnQubitOperator({QubitTerm({}):res})returnres
[docs]defadjoint(self):""" Returns an the adjoint operator. Returns ------- QubitOperator The adjoint operator. Examples -------- We create a QubitOperator and inspect its adjoint. >>> from qrisp.operators import A,C,Z >>> H = A(0)*C(1)*Z(2) >>> print(H.adjoint()) C_0*A_1*Z_2 """new_terms_dict={}forterm,coeffinself.terms_dict.items():new_terms_dict[term.adjoint()]=np.conjugate(coeff)returnQubitOperator(new_terms_dict)
[docs]defhermitize(self):""" Returns the hermitian part of self. $H = (O + O^\dagger)/2$ Returns ------- QubitOperator The hermitian part. """return0.5*(self+self.adjoint())
[docs]defground_state_energy(self):""" Calculates the ground state energy (i.e., the minimum eigenvalue) of the operator classically. Returns ------- float The ground state energy. """fromscipy.sparse.linalgimporteigshhamiltonian=self.hermitize()hamiltonian=hamiltonian.eliminate_ladder_conjugates()hamiltonian=hamiltonian.apply_threshold(0)iflen(hamiltonian.terms_dict)==0:return0M=self.hermitize().to_sparse_matrix()# Compute the smallest eigenvalueeigenvalues,_=eigsh(M,k=1,which='SA')# 'SA' stands for smallest algebraicE=eigenvalues[0]returnE
## Partitions ## Commutativity: Partitions the QubitOperator into QubitOperators with pairwise commuting QubitTermsdefcommuting_groups(self):r""" Partitions the QubitOperator into QubitOperators with pairwise commuting terms. That is, .. math:: H = \sum_{i=1}^mH_i where the terms in each $H_i$ are mutually commuting. Returns ------- groups : list[QubitOperator] The partition of the Hamiltonian. """groups=[]# Groups of commuting QubitTerms # Sorted insertion heuristic https://quantum-journal.org/papers/q-2021-01-20-385/pdf/sorted_terms=sorted(self.terms_dict.items(),key=lambdaitem:abs(item[1]),reverse=True)forterm,coeffinsorted_terms:commute_bool=Falseiflen(groups)>0:forgroupingroups:forterm_,coeff_ingroup.terms_dict.items():commute_bool=term_.commute(term)ifnotcommute_bool:breakifcommute_bool:group.terms_dict[term]=coeffbreakiflen(groups)==0ornotcommute_bool:groups.append(QubitOperator({term:coeff}))returngroupsdefgroup_up(self,group_denominator):term_groups=group_up_iterable(list(self.terms_dict.keys()),group_denominator)iflen(term_groups)==0:return[self]groups=[]forterm_groupinterm_groups:H=QubitOperator({term:self.terms_dict[term]forterminterm_group})groups.append(H)returngroups# Qubit-wise commutativity: Partitions the QubitOperator into QubitOperators with pairwise qubit-wise commuting QubitTermsdefcommuting_qw_groups(self,show_bases=False,use_graph_coloring=True):r""" Partitions the QubitOperator into QubitOperators with pairwise qubit-wise commuting terms. That is, .. math:: H = \sum_{i=1}^mH_i where the terms in each $H_i$ are mutually qubit-wise commuting. Returns ------- groups : list[QubitOperator] The partition of the Hamiltonian. """groups=[]# Groups of qubit-wise commuting QubitTermsbases=[]# Bases as termTermsifuse_graph_coloring:term_groups=group_up_iterable(list(self.terms_dict.keys()),lambdaa,b:a.commute_qw(b))forterm_groupinterm_groups:H=QubitOperator({term:self.terms_dict[term]forterminterm_group})groups.append(H)ifshow_bases:factor_dict={}forterminterm_group:forindex,factorinterm.factor_dict.items():iffactorin["X","Y","Z"]:factor_dict[index]=factorbases.append(QubitTerm(factor_dict))ifshow_bases:returngroups,baseselse:returngroups# Sorted insertion heuristic https://quantum-journal.org/papers/q-2021-01-20-385/pdf/sorted_terms=sorted(self.terms_dict.items(),key=lambdaitem:abs(item[1]),reverse=True)forterm,coeffinsorted_terms:commute_bool=Falseiflen(groups)>0:n=len(groups)foriinrange(n):commute_bool=bases[i].commute_qw(term)ifcommute_bool:bases[i].update(term.factor_dict)groups[i].terms_dict[term]=coeffbreakiflen(groups)==0ornotcommute_bool:groups.append(QubitOperator({term:coeff}))bases.append(term.copy())ifshow_bases:returngroups,baseselse:returngroups## Measurement settings and measurement#defchange_of_basis(self,qarg,method="commuting_qw"):""" Performs several operations on a quantum argument such that the hermitian part of self is diagonal when conjugated with these operations. Parameters ---------- qarg : QuantumVariable or list[Qubit] The quantum argument to apply the change of basis on. method : str, optional The method for calculating the change of basis. Available are ``commuting`` (all QubitTerms must mutually commute) and ``commuting_qw`` (all QubitTerms must mutually commute qubit-wise). The default is ``commuting_qw``. Returns ------- res : QubitOperator A qubit operator that contains only diagonal entries (I, Z, P0, P1). """# Assuming all terms of self commute qubit-wise,# the basis change for Pauli factor is trivial:# Z stays the same, for X we apply an h gate and for Y and s_dg.# For ladder operators, the situation is more intricate.# Take for instance the ladder operators A(0)*A(1)*A(2) + h.c.# In Bra-Ket form, this is |000><111| + |111><000|# The considerations from Selingers Paper https://arxiv.org/abs/2310.12256# In this work, the above term is simulated by the following circuit# ┌───┐ ┌───┐# qv_0.0: ─────┤ X ├────────────■─────────────────────────■─────────────────┤ X ├─────# └─┬─┘┌───┐ │ │ ┌───┐└─┬─┘# qv_0.1: ───────┼──┤ X ├───────■─────────────────────────■────────────┤ X ├──┼───────# ┌───┐ │ └─┬─┘┌───┐ │ ┌───┐┌──────────────┐ │ ┌───┐┌───┐└─┬─┘ │ ┌───┐# qv_0.2: ┤ X ├──■────■──┤ X ├──┼──┤ H ├┤ Rz(-1.0*phi) ├──┼──┤ H ├┤ X ├──■────■──┤ X ├# └───┘ └───┘┌─┴─┐└───┘└──────┬───────┘┌─┴─┐└───┘└───┘ └───┘# hs_anc.0: ────────────────────┤ X ├────────────■────────┤ X ├─────────────────────────# └───┘ └───┘# From this we conclude that H can be expressed as a conjugation of the following form.# H = U^dg (|110><110| - |111><111|)/2 U# Where U is the following circuit:# ┌───┐ # qb_90: ─────┤ X ├───────────────# └─┬─┘┌───┐ # qb_91: ───────┼──┤ X ├──────────# ┌───┐ │ └─┬─┘┌───┐┌───┐# qb_92: ┤ X ├──■────■──┤ X ├┤ H ├# └───┘ └───┘└───┘# This is because# exp(i*t*H) = U^dg MCRZ(i*t) U# = U^dg exp(i*t*(|110><110| - |111><111|)/2) U# The bra-ket term is already diagonal but how to express it via operators?# The answer is P1(0)*P1(1)*Z(2)# From this we conclude the underlying rule here. For ladder terms we can# pick an arbitrary qubit that we call "anchor qubit" which is conjugated# with an H gate.# After performing the conjugation with the CX gates to complete the inverse# GHZ preparation, the ladder operator transforms into a chain of projectors# whereas the anchor qubit becomes a Z gate.n=self.find_minimal_qubit_amount()ifnotcheck_for_tracing_mode()andlen(qarg)<n:raiseException("Tried to change the basis of an Operator on a quantum argument with insufficient qubits.")# This dictionary will contain the new terms/coefficient comination for the# diagonal operatornew_terms_dict={}new_factor_dicts=[]prefactors=[]ladder_conjugation_performed=Falseladder_indices=[]ifmethod=="commuting_qw":# We track which qubit is in which basis to raise an error if a# violation with the requirement of qubit wise commutativity is detected.basis_dict={}# We iterate through the terms and apply the appropriate basis transformationforterm,coeffinself.terms_dict.items():factor_dict=term.factor_dict# This dictionary will contain the factors of the new termnew_factor_dict={}new_factor_dicts.append(new_factor_dict)prefactor=1prefactors.append(prefactor)forjinrange(n):# If there is no entry in the factor dict, this corresponds to# identity => no basis change required.ifjnotinfactor_dict:continue# If j is already in the basis dict, we assert that the bases agree# (otherwise there is a violation of qubit-wise commutativity)ifjinbasis_dict:ifbasis_dict[j]!=factor_dict[j]:assertbasis_dict[j]in["Z","P0","P1"]new_factor_dict[j]="Z"continue# We treat ladder operators in the next sectioniffactor_dict[j]notin["X","Y","Z"]:continue# Update the basis dictbasis_dict[j]=factor_dict[j]# Append the appropriate basis-change gateiffactor_dict[j]=="X":h(qarg[j])iffactor_dict[j]=="Y":sx_dg(qarg[j])new_factor_dict[j]="Z"ifmethod=="commuting":# Calculate S: Matrix where the colums correspond to the binary representation (Z/X) of the Pauli termsx_vectors=[]z_vectors=[]forterm,coeffinself.terms_dict.items():x_vector,z_vector=term.binary_representation(n)x_vectors.append(x_vector)z_vectors.append(z_vector)x_matrix=np.stack(x_vectors,axis=1)z_matrix=np.stack(z_vectors,axis=1)# Find qubits (rows) on which Pauli X,Y,Z operatos actqb_indices=[]forkinrange(n):ifnot(np.all(x_matrix[k]==0)andnp.all(z_matrix[k]==0)):qb_indices.append(k)m=len(qb_indices)ifm==0:new_factor_dicts=[{}for_inrange(self.len())]prefactors=[1]*self.len()else:S=np.vstack((z_matrix[qb_indices],x_matrix[qb_indices]))# Construct and apply change of basisA,R_inv,h_list,s_list,perm=construct_change_of_basis(S)definv_graph_state(qarg):foriinrange(m):forjinrange(i):ifA[i,j]==1:cz(qarg[qb_indices[perm[i]]],qarg[qb_indices[perm[j]]])foriinqb_indices:h(qarg[i])defchange_of_basis(qarg):foriinh_list:h(qarg[qb_indices[i]])foriins_list:s(qarg[qb_indices[perm[i]]])inv_graph_state(qarg)change_of_basis(qarg)# Construct new QubitOperator## Factor (-1) appears if S gate is applied to X, or Hadamard gate H is applied to Y:# S^dagger X S = -Y# S^dagger Y S = X# S^dagger Z S = Z# H X H = Z# H Y H = -Y# H Z H = X# For the original Pauli terms this translates to: Factor (-1) appears if S gate is applied to Y, or Hadamard gate H is applied to Y# No factor (-1) occurs if H S^{-1} P S H is applied (i.e., H and S) for any P in {X,Y,Z}s_vector=np.zeros(m,dtype=int)s_vector[s_list]=1h_vector=np.zeros(m,dtype=int)h_vector[h_list]=1sh_vector=s_vector[perm]+h_vector%2sign_vector=sh_vector@(x_matrix[qb_indices]*z_matrix[qb_indices])%2# Lower triangular part of AA_low=np.tril(A)forindex,z_vectorinenumerate(R_inv.T):# Determine the sign of the product of the selected graph state stabilizers:# # Consider product of stabilizers S_{i_1}*S_{i_2}*...*S_{i_m} with (w.l.o.g.) i_1<i_2<...<i_m# For each i: Swap X_i with all Z_i's from stabilizers if index > i such that all Z_i's are on the left of X_i# Calculate the paritiy n1 of the sum of the numbers of 1's with position j>i for each row of the square submatrix A defined by z_vector# Yields a factor (-1)^n1n1=sum((z_vector@A_low)*z_vector)%2# For each i: Count the number of Z_i's: if even, no factor, if odd: factor i (ZX=iY)# Count the number n2 of rows of the square submatrix of A defined by z_vector, such that the number of 1's in each row is odd# This number is always even since A is a symmetric matrix with 0's on the diagonal# Yields a factor i^n2=(-1)^(n2/2)n2=sum((z_vector@A)*z_vector%2)new_factor_dict={qb_indices[perm[i]]:"Z"foriinrange(m)ifz_vector[i]==1}new_factor_dicts.append(new_factor_dict)prefactor=(-1)**sign_vector[index]*(-1)**(n1+n2/2)prefactors.append(prefactor)processed_ladder_index_sets=[]# Ladder operators forterm,coeffinself.terms_dict.items():prefactor=prefactors.pop(0)new_factor_dict=new_factor_dicts.pop(0)# Next we treat the ladder operatorsladder_operators=[baseforbaseinterm.factor_dict.items()ifbase[1]in["A","C"]]ladder_operators.sort(key=lambdax:x[0])iflen(ladder_operators):# The anchor factor is the "last" ladder operator. # This is the qubit where the H gate will be executed.anchor_factor=ladder_operators[-1]new_factor_dict[ladder_operators[-1][0]]="Z"ladder_indices=set(ladder_factor[0]forladder_factorinladder_operators)# Perform the cnot gatesforjinrange(len(ladder_operators)-1):ifanchor_factor[1]=="C":ifladder_operators[j][1]=="A":new_factor_dict[ladder_operators[j][0]]="P1"else:new_factor_dict[ladder_operators[j][0]]="P0"else:ifladder_operators[j][1]=="A":new_factor_dict[ladder_operators[j][0]]="P0"else:new_factor_dict[ladder_operators[j][0]]="P1"forind_setinprocessed_ladder_index_sets:ifind_set.intersection(ladder_indices):ifladder_indices!=ind_set:raiseException("Tried to perform change of basis on operator containing non-matching ladder indices")breakelse:# Perform the cnot gatesforjinrange(len(ladder_operators)-1):cx(qarg[anchor_factor[0]],qarg[ladder_operators[j][0]])# Execute the H-gateh(qarg[anchor_factor[0]])processed_ladder_index_sets.append(ladder_indices)prefactor*=0.5fork,vinterm.factor_dict.items():ifvin["P0","P1"]:new_factor_dict[k]=vnew_term=QubitTerm(new_factor_dict)new_terms_dict[new_term]=prefactor*self.terms_dict[term]returnQubitOperator(new_terms_dict)defget_conjugation_circuit(self):# This method returns a QuantumCircuit that should be applied# before a measurement of self is peformed.# The method assumes that all terms within this Operator commute qubit-# wise. For instance, if an X operator is supposed to be measured,# the conjugation circuit will contain an H gate at that point,# because the X operator can be measured by measuring the Z Operator# in the H-transformed basis.# For the ladder operators, the conjugation circuit not this straight-# forward. To understand how we measure the ladder operators, consider# the operator# H = (A(0)*A(1)*A(2) + h.c.)# = (|000><111| + |111><000|)# The considerations from Selingers Paper https://arxiv.org/abs/2310.12256# motivate that H can be expressed as a conjugation of the following form.# H = U^dg (|110><110| - |111><111|)/2 U# This is because# exp(i*t*H) = U^dg MCRZ(i*t) U# = U^dg exp(i*t*(|110><110| - |111><111|)/2) U# We use this insight because the Operator # |111><111| - |110><110| = |11><11| (x) (|0><0| - |1><1|) # = |11><11| (x) Z# can be measured via postprocessing.# The postprocessing to do is essentially measuring the last qubit as# a regular Z operator and only add the result to the expectation value# if the first two qubits are measured to be in the |1> state.# If they are in any other state nothing should be added.# From this we can also conclude how the conjugation circuit needs to# look like: Essentially like the conjugation circuit from the paper.# For our example above (when simulated) gives:# ┌───┐ ┌───┐# qv_0.0: ─────┤ X ├────────────■─────────────────────────■─────────────────┤ X ├─────# └─┬─┘┌───┐ │ │ ┌───┐└─┬─┘# qv_0.1: ───────┼──┤ X ├───────■─────────────────────────■────────────┤ X ├──┼───────# ┌───┐ │ └─┬─┘┌───┐ │ ┌───┐┌──────────────┐ │ ┌───┐┌───┐└─┬─┘ │ ┌───┐# qv_0.2: ┤ X ├──■────■──┤ X ├──┼──┤ H ├┤ Rz(-1.0*phi) ├──┼──┤ H ├┤ X ├──■────■──┤ X ├# └───┘ └───┘┌─┴─┐└───┘└──────┬───────┘┌─┴─┐└───┘└───┘ └───┘# hs_anc.0: ────────────────────┤ X ├────────────■────────┤ X ├─────────────────────────# └───┘ └───┘# Where the construction of the MCRZ gate is is encoded into the Toffolis# and the controlled RZ-Gate.# The conjugation circuit therefore needs to look like this:# ┌───┐ # qb_90: ─────┤ X ├───────────────# └─┬─┘┌───┐ # qb_91: ───────┼──┤ X ├──────────# ┌───┐ │ └─┬─┘┌───┐┌───┐# qb_92: ┤ X ├──■────■──┤ X ├┤ H ├# └───┘ └───┘└───┘# To learn more about how the post-processing is implemented check the# comments of QubitTerm.serialize# ===============# Create a QuantumCircuit that contains the conjugationfromqrispimportQuantumCircuitn=self.find_minimal_qubit_amount()qc=QuantumCircuit(n)# We track which qubit is in which basis to raise an error if a# violation with the requirement of qubit wise commutativity is detected.basis_dict={}# We iterate through the terms and apply the appropriate basis transformationforterm,coeffinself.terms_dict.items():factor_dict=term.factor_dictforjinrange(n):# If there is no entry in the factor dict, this corresponds to# identity => no basis change required.ifjnotinfactor_dict:continue# If j is already in the basis dict, we assert that the bases agree# (otherwise there is a violation of qubit-wise commutativity)ifjinbasis_dict:assertbasis_dict[j]==factor_dict[j]continue# We treat ladder operators in the next sectioniffactor_dict[j]notin["X","Y","Z"]:continue# Update the basis dictbasis_dict[j]=factor_dict[j]# Append the appropriate basis-change gateiffactor_dict[j]=="X":qc.h(j)iffactor_dict[j]=="Y":qc.sx(j)# Next we treat the ladder operatorsladder_operators=[baseforbaseinterm.factor_dict.items()ifbase[1]in["A","C"]]iflen(ladder_operators):# The anchor factor is the "last" ladder operator. # This is the qubit where the H gate will be executed.anchor_factor=ladder_operators[-1]# Flip the anchor qubit if the ladder operator is an annihilatorifanchor_factor[1]=="C":qc.x(anchor_factor[0])# Perform the cnot gatesforjinrange(len(ladder_operators)-1):qc.cx(anchor_factor[0],ladder_operators[j][0])# Flip the anchor qubit backifanchor_factor[1]=="C":qc.x(anchor_factor[0])# Execute the H-gateqc.h(anchor_factor[0])returnqc,QubitOperator(self.terms_dict)defget_operator_variance(self,n=1):""" Calculates the optimal distribution and number of shots following https://quantum-journal.org/papers/q-2021-01-20-385/pdf/. Normally to compute the variance of an operator, the distribution has to be known. Since the distribution is not known without querying the quantum device, the authors estimate the variance as the expectation value of a distribution of quantum states. This distribution is uniform across the unit sphere. For an arbitrary Pauli-Operator P != I they conclude E(Var(P)) = alpha_n = 1 - 1/(2^n + 1) Where 2^n is the dimension of the comprising space Since the QubitOperator class also contains A, C and P operators, we have to do more work. To understand how the variance can be estimated, recall that every QubitOperator O can be transformed to a sum of Pauli strings Var(O) = Var(sum_i(c_i*P_i)) = sum_i(Var(c_i*P_i)) + 2*sum_[0<=i<j<=n](Cov(c_i*P_i,c_j*P_j)) The last line can be found in https://arxiv.org/pdf/1907.13623 section 10.1. Theorem 2 of that very same source states that for the above distribution of states, we have E(Cov(P_i, P_j)) = 0 if P_i != P_j From that we conclude E(Var(O)) = sum_i(E(Var(c_i*P_i))) = sum_i(abs(c_i)**2*E(Var(P_i))) = alpha_n * sum_i(abs(c_i)**2) It therefore suffices to compute the variance of the Pauli form of the QubitOperator. """var=0pauli_form=self.hermitize().to_pauli()forterm,coeffinpauli_form.terms_dict.items():iflen(term.factor_dict)!=0:var+=abs(coeff)**2alpha_n=1-1/(2**n+1)returnvar*alpha_n
[docs]defget_measurement(self,qarg,precision=0.01,backend=None,compile=True,compilation_kwargs={},subs_dic={},precompiled_qc=None,diagonalisation_method="commuting_qw",measurement_data=None# measurement settings):r""" This method returns the expected value of a Hamiltonian for the state of a quantum argument. Note that this method measures the **hermitized** version of the operator: .. math:: H = (O + O^\dagger)/2 Parameters ---------- qarg : :ref:`QuantumVariable` or list[Qubit] The quantum argument to evaluate the Hamiltonian on. precision : float, optional The precision with which the expectation of the Hamiltonian is to be evaluated. The default is 0.01. The number of shots scales quadratically with the inverse precision. backend : :ref:`BackendClient`, optional The backend on which to evaluate the quantum circuit. The default can be specified in the file default_backend.py. compile : bool, optional Boolean indicating if the .compile method of the underlying QuantumSession should be called before. The default is ``True``. compilation_kwargs : dict, optional Keyword arguments for the compile method. For more details check :meth:`QuantumSession.compile <qrisp.QuantumSession.compile>`. The default is ``{}``. subs_dic : dict, optional A dictionary of Sympy symbols and floats to specify parameters in the case of a circuit with unspecified, :ref:`abstract parameters<QuantumCircuit>`. The default is ``{}``. precompiled_qc : QuantumCircuit, optional A precompiled quantum circuit. diagonalisation_method : str, optional Specifies the method for grouping and diagonalizing the QubitOperator. Available are ``commuting_qw``, i.e., the operator is grouped based on qubit-wise commutativity of terms, and ``commuting``, i.e., the operator is grouped based on commutativity of terms. The default is ``commuting_qw``. measurement_data : QubitOperatorMeasurement Cached data to accelerate the measurement procedure. Automatically generated by default. Raises ------ Exception If the containing QuantumSession is in a quantum environment, it is not possible to execute measurements. Returns ------- float The expected value of the Hamiltonian. Examples -------- We define a Hamiltonian, and measure its expected value for the state of a :ref:`QuantumVariable`. :: from qrisp import QuantumVariable, h from qrisp.operators.qubit import X,Y,Z qv = QuantumVariable(2) h(qv) H = Z(0)*Z(1) res = H.get_measurement(qv) print(res) #Yields 0.0011251406425802912 """returnget_measurement(self,qarg,precision=precision,backend=backend,compile=compile,compilation_kwargs=compilation_kwargs,subs_dic=subs_dic,precompiled_qc=precompiled_qc,diagonalisation_method=diagonalisation_method,measurement_data=measurement_data)
## Trotterization#
[docs]deftrotterization(self,method='commuting_qw',forward_evolution=True):r""" .. _ham_sim: Returns a function for performing Hamiltonian simulation, i.e., approximately implementing the unitary operator $U(t) = e^{-itH}$ via Trotterization. Note that this method will always simulate the **hermitized** operator, i.e. .. math:: H = (O + O^\dagger)/2 Parameters ---------- method : str, optional The method for grouping the QubitTerms. Available are ``commuting`` (groups such that all QubitTerms mutually commute) and ``commuting_qw`` (groups such that all QubitTerms mutually commute qubit-wise). The default is ``commuting_qw``. forward_evolution : bool, optional If set to False $U(t)^\dagger = e^{itH}$ will be executed (usefull for quantum phase estimation). The default is True. Returns ------- U : function A Python function that implements the first order Suzuki-Trotter formula. Given a Hamiltonian $H=H_1+\dotsb +H_m$ the unitary evolution $e^{-itH}$ is approximated by .. math:: e^{-itH}\approx U(t,N)=\left(e^{-iH_1t/N}\dotsb e^{-iH_mt/N}\right)^N This function receives the following arguments: * qarg : QuantumVariable The quantum argument. * t : float, optional The evolution time $t$. The default is 1. * steps : int, optional The number of Trotter steps $N$. The default is 1. * iter : int, optional The number of iterations the unitary $U(t,N)$ is applied. The default is 1. Examples -------- We simulate a simple QubitOperator. >>> from sympy import Symbol >>> from qrisp.operators import A,C,Z,Y >>> from qrisp import QuantumVariable >>> O = A(0)*C(1)*Z(2) + Y(3) >>> U = O.trotterization() >>> qv = QuantumVariable(4) >>> t = Symbol("t") >>> U(qv, t = t) >>> print(qv.qs) QuantumCircuit: --------------- ┌───┐ ┌───┐┌────────────┐┌───┐ ┌───┐ qv.0: ┤ X ├──────────────────────┤ X ├┤ Rz(-0.5*t) ├┤ X ├──────────┤ X ├ └─┬─┘ ┌───┐ ┌───┐ └─┬─┘├───────────┬┘└─┬─┘┌───┐┌───┐└─┬─┘ qv.1: ──■───────┤ H ├─────┤ X ├────■──┤ Rz(0.5*t) ├───■──┤ X ├┤ H ├──■── └───┘ └─┬─┘ └───────────┘ └─┬─┘└───┘ qv.2: ──────────────────────■──────────────────────────────■──────────── ┌────┐┌───────────┐┌──────┐ qv.3: ┤ √X ├┤ Rz(2.0*t) ├┤ √Xdg ├─────────────────────────────────────── └────┘└───────────┘└──────┘ Live QuantumVariables: ---------------------- QuantumVariable qv Execute a simulation: >>> print(qv.get_measurement(subs_dic = {t : 0.5})) {'0000': 0.77015, '0001': 0.22985} """O=self.hermitize().eliminate_ladder_conjugates()commuting_groups=O.group_up(lambdaa,b:a.commute(b))ifmethod=='commuting_qw':deftrotter_step(qarg,t,steps):forcom_groupincommuting_groups:qw_groups=com_group.group_up(lambdaa,b:a.commute_qw(b)anda.ladders_agree(b))forqw_groupinqw_groups:withconjugate(qw_group.change_of_basis)(qarg)asdiagonal_operator:intersect_groups=diagonal_operator.group_up(lambdaa,b:nota.intersect(b))forintersect_groupinintersect_groups:forterm,coeffinintersect_group.terms_dict.items():coeff=jnp.real(coeff)term.simulate(-coeff*t/steps*(-1)**int(forward_evolution),qarg)ifmethod=='commuting':deftrotter_step(qarg,t,steps):forcom_groupincommuting_groups:withconjugate(com_group.change_of_basis)(qarg,method="commuting")asdiagonal_operator:intersect_groups=diagonal_operator.group_up(lambdaa,b:nota.intersect(b))forintersect_groupinintersect_groups:forterm,coeffinintersect_group.terms_dict.items():term.simulate(-coeff*t/steps*(-1)**int(forward_evolution),qarg)defU(qarg,t=1,steps=1,iter=1):ifcheck_for_tracing_mode():foriinjrange(iter*steps):trotter_step(qarg,t,steps)else:merge([qarg])withIterationEnvironment(qarg.qs,iter*steps):trotter_step(qarg,t,steps)returnU
Get in touch!
If you are interested in Qrisp or high-level quantum algorithm research in general connect with us on our
Slack workspace.