Source code for qrisp.qaoa.problems.maxIndepSet

"""
\********************************************************************************
* Copyright (c) 2024 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""

from qrisp import QuantumBool, x, mcx
from qrisp.algorithms.qaoa.mixers import controlled_RX_mixer_gen
import itertools


[docs] def create_max_indep_set_mixer(G): r""" Creates the ``controlled_RX_mixer`` for an instance of the maximal independet set problem for a given graph ``G`` following `Hadfield et al. <https://arxiv.org/abs/1709.03489>`_ The belonging ``predicate`` function indicates if a set can be swapped into the solution. Parameters ---------- G : nx.Graph The graph for the problem instance. Returns ------- function A Python function receiving a :ref:`QuantumVariable` and real parameter $\beta$. This function performs the application of the mixer associated to the graph ``G``. """ neighbors_dict = {node: list(G.adj[node]) for node in G.nodes()} def predicate(qv,i): qbl = QuantumBool() if len(neighbors_dict[i])==0: x(qbl) else: mcx([qv[j] for j in neighbors_dict[i]],qbl,ctrl_state='0'*len(neighbors_dict[i])) return qbl controlled_RX_mixer=controlled_RX_mixer_gen(predicate) return controlled_RX_mixer
[docs] def create_max_indep_set_cl_cost_function(G): """ Creates the classical cost function for an instance of the maximal independet set problem for a given graph ``G``. Parameters ---------- G : nx.Graph The Graph for the problem instance. Returns ------- cl_cost_function : function The classical cost function for the problem instance, which takes a dictionary of measurement results as input. """ def cl_cost_function(res_dic): cost = 0 for state, prob in res_dic.items(): temp = True indices = [index for index, value in enumerate(state) if value == '1'] combinations = list(itertools.combinations(indices, 2)) for combination in combinations: if combination in G.edges(): temp = False break if temp: cost += -len(indices)*prob return cost return cl_cost_function
[docs] def max_indep_set_init_function(qv): r""" Prepares the initial state $\ket{0}^{\otimes n}$. Parameters ---------- qv : :ref:`QuantumVariable` The quantum argument. """ pass
[docs] def max_indep_set_problem(G): """ Creates a QAOA problem instance with appropriate phase separator, mixer, and classical cost function. Parameters ---------- G : nx.Graph The graph for the problem instance. Returns ------- :ref:`QAOAProblem` A QAOA problem instance for MaxIndepSet for a given graph ``G``. """ from qrisp.qaoa import QAOAProblem, RZ_mixer return QAOAProblem(cost_operator=RZ_mixer, mixer=create_max_indep_set_mixer(G), cl_cost_function=create_max_indep_set_cl_cost_function(G), init_function=max_indep_set_init_function)