Source code for qrisp.qaoa.problems.eThrLinTwo
"""
\********************************************************************************
* Copyright (c) 2024 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""
from qrisp import cx, rz, conjugate
def parity(qarg, indices):
n = len(indices)
for i in range(n-1):
cx(qarg[indices[i]],qarg[indices[i+1]])
[docs]
def create_e3lin2_cost_operator(clauses):
r"""
Creates the cost operator for an instance of the E3Lin2 problem following `Hadfield et al. <https://arxiv.org/abs/1709.03489>`_
The cost operator is given by $e^{-i\gamma H}$ where
.. math::
H=\sum_{j=1}^m H_j,\qquad H_j=(-1)^{b_j}Z_{a_{1,j}}Z_{a_{2,j}}Z_{a_{3,j}}
Parameters
----------
clauses : list[list[int]]
The clasues defining the problem.
Returns
-------
function
A Python function receiving a ``QuantumVariable`` and real parameter $\beta$.
This function performs the application of the mixer associated to the graph $G$.
"""
def cost_operator(qv, gamma):
for clause in clauses:
with conjugate(parity)(qv, clause[:3]):
rz((-1)**clause[3]*gamma,qv[clause[2]])
return cost_operator
[docs]
def create_e3lin2_cl_cost_function(clauses):
"""
Creates the cost operator for an instance of the E3Lin2 problem.
Parameters
----------
clauses : list[list[int]]
The clasues defining the problem.
Returns
-------
cl_cost_function : function
The classical cost function for the problem instance, which takes a dictionary of measurement results as input.
"""
def cl_cost_function(res_dic):
cost = 0
for state, prob in res_dic.items():
for clause in clauses:
if sum(int(state[clause[k]]) for k in range(3)) % 2 == clause[3]:
cost -= prob
return cost
return cl_cost_function
[docs]
def e3lin2_problem(clauses):
"""
Creates a QAOA problem instance with appropriate phase separator, mixer, and
classical cost function.
Parameters
----------
clauses : list[list[int]]
The clauses of the E3Lin2 problem instance.
Returns
-------
:ref:`QAOAProblem`
A QAOA problem instance for E3Lin2 for given ``clauses``.
"""
from qrisp.qaoa import QAOAProblem, RX_mixer
return QAOAProblem(cost_operator=create_e3lin2_cost_operator(clauses),
mixer=RX_mixer,
cl_cost_function=create_e3lin2_cl_cost_function(clauses))