Source code for qrisp.core.quantum_array

"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""


from itertools import product

import numpy as np

from qrisp.circuit import transpile
from qrisp.core import QuantumVariable, qompiler
from qrisp.misc import bin_rep


[docs] class QuantumArray(np.ndarray): """ This class allows the convenient management of multiple QuantumVariables of one type. As a subclass of `numpy's ndarray <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html>`_, the QuantumArray supports many convenient array manipulation methods. Similar to the numpy equivalent, creating a QuantumArray can be achieved by specifying a shape and a ``qtype``: >>> import numpy as np >>> from qrisp import QuantumArray, QuantumFloat >>> qtype = QuantumFloat(5, -2) >>> q_array = QuantumArray(qtype = qtype, shape = (2, 2, 2)) Note that ``qtype`` is not a type object but a QuantumVariable which serves as an "example". To retrieve the entries (i.e. QuantumVariables) from the QuantumArray, we simply index as with regular numpy arrays: >>> from qrisp import h >>> qv = q_array[0,0,1] >>> h(qv[0]) >>> print(q_array) {OutcomeArray([[[0., 0.], [0., 0.]], [[0., 0.], [0., 0.]]]): 0.5, OutcomeArray([[[0. , 0.25], [0. , 0. ]], [[0. , 0. ], [0. , 0. ]]]): 0.5} We see the value 0.25 in the second entry because we applied an H-gate onto the 0-th qubit of the QuantumVariable at position (0,0,1). Since the type of this array is a QuantumFloat, with exponent -2, the significance of this qubit is 0.25. Note that the keys of the dictionary returned by the get_measurement method are no regular numpy arrays, as key objects need to be hashable. Instead, they are objects of an immutable subclass of np.ndarray called OutcomeArray, that supports hashing. For QuantumArrays, many methods known from numpy arrays work here too: >>> q_array = q_array.reshape(2,4) Not only do the ndarray methods work but also many other convenience functions from the numpy module: >>> q_array_swap = np.swapaxes(q_array, 0, 1) >>> print(q_array_swap) {OutcomeArray([[0., 0.], [0., 0.], [0., 0.], [0., 0.]]): 0.5, OutcomeArray([[0. , 0. ], [0.25, 0. ], [0. , 0. ], [0. , 0. ]]): 0.5} To initiate the array, we use the :meth:`encode <qrisp.QuantumArray.encode>` method. Similar to QuantumVariables, we can also use the slicing operator, but this time non-trivial slices are possible as well: >>> q_array[1:,:] = 2*np.ones((1,4)) >>> print(q_array) {OutcomeArray([[0., 0., 0., 0.], [2., 2., 2., 2.]]): 0.5, OutcomeArray([[0. , 0.25, 0. , 0. ], [2. , 2. , 2. , 2. ]]): 0.5} The shape of a QuantumArray does not have to be specified at creation. We can either set it through the :meth:`set_shape <qrisp.QuantumArray.set_shape>` method or by initiating: >>> q_array_1 = QuantumArray(qtype = qtype) >>> q_array_1.set_shape((2,2)) >>> print(q_array_1) {OutcomeArray([[0., 0.], [0., 0.]]): 1.0} >>> q_array_2 = QuantumArray(qtype = qtype) >>> q_array_2[:] = np.eye(2) >>> print(q_array_2) {OutcomeArray([[1., 0.], [0., 1.]]): 1.0} **Quantum indexing** QuantumArrays can be dereferenced by :ref:`QuantumFloats <QuantumFloat>`. This returns a :ref:`QuantumEnvironment` in which the corresponding entry is avaliable as a QuantumVariable. :: from qrisp import QuantumBool, QuantumArray, QuantumFloat, h, multi_measurement q_array = QuantumArray(QuantumBool(), shape = (4,4)) index_0 = QuantumFloat(2) index_1 = QuantumFloat(2) index_0[:] = 2 index_1[:] = 1 h(index_0[0]) with q_array[index_0, index_1] as entry: entry.flip() >>> print(multi_measurement([index_0, index_1, q_array])) {(2, 1, OutcomeArray([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 0.]])): 0.5, (3, 1, OutcomeArray([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 1., 0., 0.]])): 0.5} .. note:: This only works for arrays which have a size of an integer power of 2. **Matrix multiplication** For QuantumArrays with ``qtype`` QuantumFloat, matrix multiplication is available. >>> q_array_1 = QuantumArray(qtype) >>> q_array_2 = QuantumArray(qtype) >>> q_array_1[:] = 2*np.eye(2) >>> q_array_2[:] = [[1,2],[3,4]] >>> print(q_array_1 @ q_array_2) {OutcomeArray([[2., 4.], [6., 0.]]): 1.0} .. note:: By default, the output matrix will have the same ``qtype`` as the first input matrix. Here, the ``qtype`` is a QuantumFloat with 5 mantissa bits and exponent -2, implying that the result 8 yields overflow. Since qrisps unsigend arithmetic is modular, we get a 0. It is also possible to multiply classical and quantum matrices >>> q_array = QuantumArray(qtype) >>> q_array[:] = 3*np.eye(2) >>> cl_array = np.array([[1,2],[3,4]]) >>> print(q_array @ cl_array) {OutcomeArray([[3., 6.], [1., 4.]]): 1.0} """ def __new__(subtype, qtype, shape=0, qs=None, name=None): if isinstance(shape, QuantumVariable): raise Exception obj = super().__new__(subtype, shape, dtype="object") if shape == 0: obj.shape_specified = False else: obj.shape_specified = True from qrisp.misc import find_calling_line if name is None: if type(obj) is QuantumArray: line = find_calling_line(1) else: line = find_calling_line(2) split_line = line.split("=") if len(split_line) == 2 and False: python_var_name = split_line[0] python_var_name = python_var_name.split(" ")[0] python_var_name = python_var_name.split(" ")[-1] name = python_var_name else: from qrisp import QuantumBool, QuantumChar, QuantumFloat if isinstance(qtype, QuantumFloat): name = qtype.get_unique_name("qf_array") elif isinstance(qtype, QuantumBool): name = qtype.get_unique_name("qbl_array") elif isinstance(qtype, QuantumChar): name = qtype.get_unique_name("qch_array") else: name = qtype.get_unique_name("qv_array") else: if name[-1] == "*": name = qtype.get_unique_name(name[:-1]) obj.name = qtype.name # Set data size obj.msize = qtype.size obj.qtype = qtype if qs is None: from qrisp.core import QuantumSession qs = QuantumSession() if isinstance(shape, int): shape = (shape,) indices = list(product(*[list(range(i)) for i in shape])) for i in indices: temp_dup = qtype.duplicate(name=obj.name + "*", qs=qs) np.ndarray.__setitem__(obj, i, temp_dup) obj.qs = qs return obj
[docs] def decoder(self, code_int): """ The decoder method specifies how a QuantumArray turns the outcomes of measurements into human-readable values. It recieves an integer i and returns an OutcomeArray. Parameters ---------- i : int Integer representing the outcome of a measurement of the qubits of this QuantumArray. Returns ------- res : np.ndarray An array with entries of the type of the results of the .decoder of the qtype of this array. Examples -------- We create a QuantumFloat and inspect its decoder: >>> from qrisp import QuantumArray, QuantumFloat >>> qtype = QuantumFloat(3) >>> q_array = QuantumArray(qtype, (2,2)) >>> print(q_array.decoder(1)) [[0 0] [0 1]] """ flattened_array = self.flatten() from qrisp.qtypes.quantum_float import QuantumFloat if isinstance(self.qtype, QuantumFloat): if self.qtype.exponent >= 0: res = np.zeros(len(flattened_array), dtype=np.int32) else: res = np.zeros(len(flattened_array)) else: res = np.zeros(len(flattened_array)) n = len(self.qtype) bin_string = bin_rep(code_int, len(flattened_array) * n) for i in range(len(flattened_array)): if isinstance(self.qtype, QuantumFloat): res[i] = self.qtype.decoder(int(bin_string[i * n : (i + 1) * n], 2)) else: res = res.astype("object") res[i] = self.qtype.decoder(int(bin_string[i * n : (i + 1) * n], 2)) return OutcomeArray(res.reshape(self.shape))
[docs] def encoder(self, encoding_array): """ The encoder reverses the decoder, it turns arrays into integers based on the encoder of the ``qtype`` of this array. Parameters ---------- encoding_array : An array where the entries can be read by the decoder of qtype. Raises ------ Exception Tried to call encoder on array with mismatching shape. Returns ------- i : int The integer encoding the given array. Examples -------- We create a QuantumArray and inspect it's encoder: >>> from qrisp import QuantumArray, QuantumFloat >>> qtype = QuantumFloat(3) >>> q_array = QuantumArray(qtype, (2,2)) >>> print(q_array.encoder(np.eye(2))) 513 """ if isinstance(encoding_array, list): encoding_array = np.array(encoding_array) if self.shape != encoding_array.shape: raise Exception("Tried to call encoder on array with mismatching shape") flattened_encoding_array = encoding_array.flatten() flattened_quantum_array = self.flatten() encoding_int_str = "" for i in range(len(flattened_encoding_array)): qv = flattened_quantum_array[i] encoding_int_str += bin_rep( qv.encoder(flattened_encoding_array[i]), qv.size )[::-1] return int(encoding_int_str[::-1], 2)
[docs] def set_shape(self, shape): """ Method to specify a shape for arrays which have been created without one. Parameters ---------- shape : tuple Desired shape. Raises ------ Exception QuantumArray already has a shape. """ if self.shape_specified: raise Exception( "Tried to set shape of QuantumArray, which already has a shape" ) if isinstance(shape, int): shape = (shape,) self.resize(shape, refcheck=False) indices = list(product(*[list(range(i)) for i in shape])) for i in indices: temp_dup = self.qtype.duplicate(qs=self.qs) np.ndarray.__setitem__(self, i, temp_dup) self.shape_specified = True
def __setitem__(self, key, value): if not self.shape_specified: if not hasattr(value, "shape"): value = np.array(value) self.set_shape(value.shape) if isinstance(value, QuantumArray): self[key].init_from(value) return if isinstance(value, QuantumVariable): return self[key].encode(value) return self def __array_function__(self, func, types, args, kwargs): if func.__name__ == "concatenate": from qrisp import merge if id(args[0][0].qtype) != id(args[0][1].qtype): raise Exception( "Tried to concatenate arrays with differing qtype objects" ) merge(args) ndarray_res = np.ndarray.__array_function__(self, func, types, args, kwargs) res = QuantumArray(self.qtype, shape=ndarray_res.shape) indices = product(*[list(range(i)) for i in ndarray_res.shape]) for i in indices: np.ndarray.__setitem__(res, i, ndarray_res[i]) res.qs = args[0][0].qs res.qtype = args[0][0].qtype return res else: return np.ndarray.__array_function__(self, func, types, args, kwargs) # Retrieves a measurement of the arrays state # Returns a list of tuples of the type (array, count) # ie. [(array([1,1,0]), 232), (array([1,1,3]), 115), ...]
[docs] def get_measurement( self, backend=None, shots=None, compile=True, compilation_kwargs={}, subs_dic={}, circuit_preprocessor=None, precompiled_qc=None, ): """ Method for acquiring measurement results for the given array. The semantics are similar to the :meth:`get_measurement <qrisp.QuantumVariable.get_measurement>` method of QuantumVariable. The results are returned as a dictionary of another numpy subtype called OutcomeArray. Parameters ---------- backend : BackendClient, optional The backend on which to evaluate the quantum circuit. The default can be specified in the file default_backend.py. shots : integer, optional The amount of shots to evaluate the circuit. The default is given by the backend used. compile : bool, optional Boolean indicating if the .compile method of the underlying QuantumSession should be called before. The default is True. compilation_kwargs : dict, optional Keyword arguments for the compile method. For more details check :meth:`QuantumSession.compile <qrisp.QuantumSession.compile>`. The default is ``{}``. subs_dic : dict, optional A dictionary of sympy symbols and floats to specify parameters in the case of a circuit with unspecified, abstract parameters. The default is {}. circuit_preprocessor : Python function, optional A function which recieves a QuantumCircuit and returns one, which is applied after compilation and parameter substitution. The default is None. Raises ------ Exception Tried to get measurement within open environment. Returns ------- list of tuples The measurement results in the form [(outcome_label, probability), ...]. Examples -------- >>> from qrisp import QuantumFloat, QuantumArray >>> qtype = QuantumFloat(3) >>> q_array = QuantumArray(qtype) >>> q_array[:] = [[1,0],[0,1]] >>> res = q_array.get_measurement() >>> print(res) {OutcomeArray([[1, 0], [0, 1]]): 1.0} """ for qv in self.flatten(): if qv.is_deleted(): raise Exception( "Tried to measure QuantumArray containing deleted QuantumVariables" ) if not self.shape_specified: raise Exception("Tried to measure QuantumArray without shape specification") if backend is None: if self.qs.backend is None: from qrisp.default_backend import def_backend backend = def_backend else: backend = self.qs.backend if len(self.qs.env_stack) != 0: raise Exception("Tried to get measurement within open environment") qubits = sum([qv.reg for qv in self.flatten()[::-1]], []) # Copy circuit in over to prevent modification # from qrisp.quantum_network import QuantumNetworkClient if precompiled_qc is None: if compile: qc = qompiler( self.qs, intended_measurements=qubits, **compilation_kwargs ) else: qc = self.qs.copy() # Transpile circuit qc = transpile(qc) else: qc = precompiled_qc.copy() # Bind parameters if subs_dic: qc = qc.bind_parameters(subs_dic) from qrisp.core.compilation import combine_single_qubit_gates qc = combine_single_qubit_gates(qc) # Execute user specified circuit_preprocessor if circuit_preprocessor is not None: qc = circuit_preprocessor(qc) from qrisp.misc import get_measurement_from_qc counts = get_measurement_from_qc(qc, qubits, backend, shots) # Insert outcome labels (if available and hashable) new_counts_dic = {} for key in counts.keys(): outcome_label = self.decoder(key) new_counts_dic[outcome_label] = counts[key] counts = new_counts_dic # Sort keys sorted_key_list = list(counts.keys()) sorted_key_list.sort(key=lambda x: -counts[x]) counts = {key: counts[key] for key in sorted_key_list} return counts
[docs] def encode(self, encoding_array): """ The encode method allows to quickly bring a QuantumArray in a desired computational basis state. For this, it performs a circuit, bringing fresh qubits into the integer state specified by the encoder. A shorthand for this method is given by the ``[:]`` operator. Note that the qubits to initialize have to be fresh (i.e. no operations performed on them). Parameters ---------- value : A value supported by the encoder. Examples -------- We create a QuantumArray and encode the identity matrix. >>> from qrisp import QuantumArray, QuantumFloat >>> qtype = QuantumFloat(5) >>> q_array = QuantumArray(qtype, (4,4)) >>> q_array.encode(np.eye(4)) >>> print(q_array) {OutcomeArray([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]): 1.0} Using the slice operator we can also encode on slices of QuantumArrays >>> q_array = QuantumArray(qtype, (4,4)) >>> q_array[:,:2] = np.ones((4,2)) >>> print(q_array) {OutcomeArray([[1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0]]): 1.0} """ flattened_array = self.flatten() qubit_list = sum([qv.reg for qv in flattened_array], []) from qrisp.misc import check_if_fresh, int_encoder if not check_if_fresh(qubit_list, self.qs): raise Exception("Tried to initialize qubits which are not fresh anymore.") int_encoder(qubit_list, self.encoder(encoding_array)) return
[docs] def delete(self, verify=False): r""" Performs the :meth:`delete <qrisp.QuantumVariable.delete>` method on all QuantumVariables in this array. Parameters ---------- verify : bool, optional If this keyword is set to true, a simulator is queried to check if the deleted qubits are in the $\ket{0}$ state. The default is False. """ for qv in self.flatten(): qv.delete(verify=verify)
def __repr__(self): return str(self.get_measurement()) def __str__(self): return str(self.get_measurement()) def __matmul__(self, other): from qrisp import QuantumFloat if isinstance(self.qtype, QuantumFloat): if isinstance(other, QuantumArray): from qrisp.alg_primitives.arithmetic import q_matmul return q_matmul(self, other) elif isinstance(other, np.ndarray): from qrisp.alg_primitives.arithmetic import semi_classic_matmul return semi_classic_matmul(self, other) raise Exception("Matrix multiplication for non-float types not implemented") def __rmatmul__(self, other): from qrisp import QuantumFloat if isinstance(self.qtype, QuantumFloat): return (self.transpose() @ other.transpose()).transpose() def __getitem__(self, index): from qrisp.environments import conjugate if isinstance(index, QuantumVariable): return conjugate(manipulate_array)(self, index) if isinstance(index, tuple): if isinstance(index[0], QuantumVariable): return conjugate(manipulate_array)(self, index) return np.ndarray.__getitem__(self, index)
[docs] def init_state(self, tuple_list): """ Method to initiate arbitrary quantum states in this array. The semantics are similar to the :meth:`QuantumVariable equivalent <qrisp.QuantumVariable.init_state>` of this method. The given state will be normalized. Parameters ---------- tuple_list : list of tuples The list of tuples describing the quantum state. The first componenet of the tuples needs to represent the array and the second the required amplitude. Raises ------ Exception Tried to initialize quantum state on qubits which are not fresh anymore. Examples -------- We initiate a quantum state on an array and evaluate the measurement probabilities. >>> from qrisp import QuantumArray, QuantumFloat >>> qtype = QuantumFloat(3) >>> q_array = QuantumArray(qtype, shape = 3) >>> q_array.init_state([(np.array([1, 2, 3]), 1), (np.array([1, 2, 2]), 0.5j)]) >>> print(q_array) {OutcomeArray([1, 2, 3]): 0.8, OutcomeArray([1, 2, 2]): 0.2} """ if isinstance(tuple_list, dict): tuple_list = [(k, v) for k, v in tuple_list.items()] flattened_array = self.flatten() qubit_list = [] for qv in flattened_array: qubit_list += qv.reg from qrisp.misc import check_if_fresh if not check_if_fresh(qv.reg, qv.qs): raise Exception( "Tried to initialize quantum state on qubits," "which are not fresh anymore" ) target_array = np.zeros(2 ** len(qubit_list), dtype=np.complex128) for i in range(len(tuple_list)): target_array[self.encoder(tuple_list[i][0])] = tuple_list[i][1] target_array = target_array / np.vdot(target_array, target_array) ** 0.5 from qrisp import init_state init_state(qubit_list, target_array)
[docs] def init_from(self, other): """ Performs the :meth:`init_from <qrisp.QuantumVariable.init_from>` method on all containing QuantumVariables based on their equivalent in the QuantumArray other. Note that this method does not copy the quantum state. For more details check the documentation of the init_from method of QuantumVariable. A shorthand for this method is the slicing operator ``[:]``. Parameters ---------- other : QuantumArray The QuantumArray from which to initiate. Raises ------ Exception Tried to initialize from array of invalied shape or qtype. Examples -------- We create a QuantumArray and bring it into superposition >>> import numpy as np >>> from qrisp import QuantumArray, QuantumFloat, h, multi_measurement >>> qtype = QuantumFloat(5) >>> q_array_a = QuantumArray(qtype) >>> q_array_a[:] = np.eye(3) >>> h(q_array_a[0,0][0]) >>> print(q_array_a) {OutcomeArray([[0, 0, 0], [0, 1, 0], [0, 0, 1]]): 0.5, OutcomeArray([[1, 0, 0], [0, 1, 0], [0, 0, 1]]): 0.5} We now duplicate this array and initiate >>> q_array_b = q_array_a.duplicate() >>> q_array_b.init_from(q_array_a) >>> print(multi_measurement([q_array_a, q_array_b])) {(OutcomeArray([[0, 0, 0], [0, 1, 0], [0, 0, 1]]), OutcomeArray([[0, 0, 0], [0, 1, 0], [0, 0, 1]])): 0.5, (OutcomeArray([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), OutcomeArray([[1, 0, 0], [0, 1, 0], [0, 0, 1]])): 0.5} We can achieve the same with the slicing operator >>> q_array_c = QuantumArray(qtype, shape = (3, 3)) >>> q_array_c[1,:] = q_array_a[0,:] >>> print(multi_measurement([q_array_b, q_array_c])) {(OutcomeArray([[0, 0, 0], [0, 0, 0], [0, 0, 0]]), OutcomeArray([[0, 0, 0], [0, 0, 0], [0, 0, 0]])): 0.5, (OutcomeArray([[0, 0, 0], [1, 0, 0], [0, 0, 0]]), OutcomeArray([[0, 0, 0], [1, 0, 0], [0, 0, 0]])): 0.5} """ if id(self.qtype) != id(other.qtype) or self.shape != other.shape: raise Exception("Tried to initialize from array of invalid shape or qtype") self_fl = self.flatten() other_fl = other.flatten() for i in range(len(self_fl)): self_fl[i].init_from(other_fl[i])
[docs] def duplicate(self, init=False, qs=None): """ This method returns a fresh QuantumArray, with equal ``qtype`` and shape. Parameters ---------- init : bool, optional If set to True, the :meth:`init_from <qrisp.QuantumArray.init_from>` method will be called after creation. The default is False. qs : QuantumSession, optional The QuantumSession where the duplicate should be registered. By default, the duplicate will be registered in a new QuantumSession. Returns ------- res : QuantumArray The duplicated array. Examples -------- We duplicate a QuantumArray consisting of QuantumFloats with and without initiation. >>> from qrisp import QuantumArray, QuantumFloat >>> qtype = QuantumFloat(4) >>> q_array_0 = QuantumArray(qtype, (2,2)) >>> q_array_0[:] = np.ones((2,2)) >>> print(q_array_0) {OutcomeArray([[1, 1], [1, 1]]): 1.0} >>> q_array_1 = q_array_0.duplicate() >>> print(q_array_1) {OutcomeArray([[0, 0], [0, 0]]): 1.0} Note that no values have been carried over: >>> q_array_2 = q_array_0.duplicate(init = True) >>> print(q_array_2) {OutcomeArray([[1, 1], [1, 1]]): 1.0} Now the values have been carried over. Note that this does NOT copy the state. For more information on this check the documentation of the :meth:`init_from <qrisp.QuantumVariable.init_from>` method of QuantumVariable. """ res = self.copy() if qs is None: from qrisp import QuantumSession qs = QuantumSession() indices = product(*[list(range(i)) for i in self.shape]) for i in indices: temp_dup = self.qtype.duplicate(qs=qs) np.ndarray.__setitem__(res, i, temp_dup) res.msize = self.qtype.size res.qtype = self.qtype res.qs = qs if init: res.init_from(self) return res
def __array_finalize__(self, obj): if obj is None: return self.shape_specified = bool(obj.shape_specified) self.qtype = obj.qtype self.qs = obj.qs
[docs] def most_likely(self, **kwargs): """ Performs a measurement and returns the most likely outcome. Parameters ---------- **kwargs : Keyword arguments for the get_measurement call. Examples -------- >>> from qrisp import QuantumFloat, QuantumArray, ry >>> import numpy as np >>> qa = QuantumArray(QuantumFloat(3), shape = 4) >>> ry(np.pi*9/8, qa[0][0]) >>> print(qa) {OutcomeArray([1, 0, 0, 0]): 0.9619, OutcomeArray([0, 0, 0, 0]): 0.0381} >>> qa.most_likely() OutcomeArray([1, 0, 0, 0]) """ return list(self.get_measurement(**kwargs))[0]
def manipulate_array(q_array, index): from qrisp import QuantumFloat, demux, invert if isinstance(index, tuple): if len(q_array.shape) != len(index): raise Exception( "Tried to quantum deref QuantumArray with index of mismatching shape" ) for qf in index: if isinstance(qf, QuantumFloat): if qf.signed: raise Exception("Tried to quantum deref with a signed QuantumFloat") if qf.exponent != 0: raise Exception("Tried to quantum deref with a non-integer") index = sum([qv.reg for qv in index[::-1]], []) q_array = q_array.flatten() with invert(): demux(q_array[0], index, q_array) return q_array[0] class OutcomeArray(np.ndarray): def __new__(subtype, ndarray): if isinstance(ndarray, list): ndarray = np.array(ndarray) if ndarray.dtype == np.int64: ndarray = np.array(ndarray, dtype=np.int32) obj = super().__new__(subtype, ndarray.shape, dtype=ndarray.dtype) indices = product(*[list(range(i)) for i in ndarray.shape]) for i in indices: np.ndarray.__setitem__(obj, i, ndarray[i]) obj.flags.writeable = False return obj def __hash__(self): return hash(self.ravel().data.tobytes()) # return hash(str(self)) def __eq__(self, other): return np.array_equal(self, other) def __repr__(self): res = np.ndarray.__repr__(self).replace(", dtype=int32", "") return res