Source code for qrisp.algorithms.shor.shors_algorithm

"""
********************************************************************************
* Copyright (c) 2025 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************
"""

import numpy as np
from sympy import continued_fraction_convergents, continued_fraction_iterator, Rational

from qrisp.interface import QiskitBackend
from qrisp.alg_primitives.arithmetic.modular_arithmetic import find_optimal_m, modinv
from qrisp.alg_primitives import QFT
from qrisp import QuantumModulus, QuantumFloat, h, control

depths = []
cnot_count = []
qubits = []


def find_optimal_a(N):
    n = int(np.ceil(np.log2(N)))
    proposals = []

    # Search through the first O(1) possibilities to find a good a
    for a in range(2, min(100, N - 1)):
        # We only append non-trivial proposals
        if np.gcd(a, N) == 1:
            proposals.append(a)

    cost_dic = {}
    for a in proposals:
        m_values = []
        for k in range(2 * n + 1):
            inpl_multiplier = (a ** (2**k)) % N

            if inpl_multiplier == 1:
                continue

            # find_optimal_m is a function that determines the lowest possible
            # Montgomery shift for a given number. The higher the montgomery shift,
            # the more qubits and the more effort is needed.
            m_values.append(find_optimal_m(inpl_multiplier, N))
            m_values.append(find_optimal_m(modinv((-inpl_multiplier) % N, N), N))

        cost_dic[a] = sum(m_values) + max(m_values) * 1e-5

    proposals.sort(key=lambda a: cost_dic[a])

    optimal_a = proposals[0]

    m_values = []

    for k in range(2 * n + 1):
        inpl_multiplier = ((optimal_a) ** (2**k)) % N

        if inpl_multiplier == 1:
            continue

        m_values.append(find_optimal_m(inpl_multiplier, N))

    return proposals


def find_order(a, N, inpl_adder=None, mes_kwargs={}):
    qg = QuantumModulus(N, inpl_adder)
    qg[:] = 1
    qpe_res = QuantumFloat(2 * qg.size + 1, exponent=-(2 * qg.size + 1))
    h(qpe_res)
    for i in range(len(qpe_res)):
        with control(qpe_res[i]):
            qg *= a
            a = (a * a) % N
    QFT(qpe_res, inv=True, inpl_adder=inpl_adder)

    mes_res = qpe_res.get_measurement(**mes_kwargs)

    return extract_order(mes_res, a, N)


def extract_order(mes_res, a, N):

    collected_r_values = []

    approximations = list(mes_res.keys())

    try:
        approximations.remove(0)
    except ValueError:
        pass

    while True:

        r_values = get_r_values(approximations.pop(0))

        for r in r_values:
            if (a**r) % N == 1:
                return r

        collected_r_values.append(r_values)
        from itertools import product

        for comb in product(*collected_r_values):
            r = np.lcm.reduce(comb)
            if (a**r) % N == 1:
                return r


def get_r_values(approx):
    rationals = continued_fraction_convergents(
        continued_fraction_iterator(Rational(approx))
    )
    return [rat.q for rat in rationals if 1 < rat.q]


[docs] def shors_alg(N, inpl_adder=None, mes_kwargs={}): """ Performs `Shor's factorization algorithm <https://arxiv.org/abs/quant-ph/9508027>`_ on a given integer N. The adder used for factorization can be customized. To learn more about this feature, please read :ref:`QuantumModulus` Parameters ---------- N : integer The integer to be factored. inpl_adder : callable, optional A function that performs in-place addition. The default is None. mes_kwargs : dict, optional A dictionary of keyword arguments for :meth:`get_measurement <qrisp.QuantumVariable.get_measurement>`. This especially allows you to specify an execution backend. The default is {}. Returns ------- res : integer A factor of N. Examples -------- We factor 65: >>> from qrisp.shor import shors_alg >>> shors_alg(65) 5 """ if not N % 2: return 2 a_proposals = find_optimal_a(N) for a in a_proposals: K = np.gcd(a, N) if K != 1: res = K break r = find_order(a, N, inpl_adder, mes_kwargs) if r % 2: continue g = int(np.gcd(a ** (r // 2) + 1, N)) if g not in [N, 1]: res = g break return res