Source code for qrisp.algorithms.shor.shors_algorithm
"""
********************************************************************************
* Copyright (c) 2025 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************
"""
import numpy as np
from sympy import continued_fraction_convergents, continued_fraction_iterator, Rational
from qrisp.interface import QiskitBackend
from qrisp.alg_primitives.arithmetic.modular_arithmetic import find_optimal_m, modinv
from qrisp.alg_primitives import QFT
from qrisp import QuantumModulus, QuantumFloat, h, control
depths = []
cnot_count = []
qubits = []
def find_optimal_a(N):
n = int(np.ceil(np.log2(N)))
proposals = []
# Search through the first O(1) possibilities to find a good a
for a in range(2, min(100, N - 1)):
# We only append non-trivial proposals
if np.gcd(a, N) == 1:
proposals.append(a)
cost_dic = {}
for a in proposals:
m_values = []
for k in range(2 * n + 1):
inpl_multiplier = (a ** (2**k)) % N
if inpl_multiplier == 1:
continue
# find_optimal_m is a function that determines the lowest possible
# Montgomery shift for a given number. The higher the montgomery shift,
# the more qubits and the more effort is needed.
m_values.append(find_optimal_m(inpl_multiplier, N))
m_values.append(find_optimal_m(modinv((-inpl_multiplier) % N, N), N))
cost_dic[a] = sum(m_values) + max(m_values) * 1e-5
proposals.sort(key=lambda a: cost_dic[a])
optimal_a = proposals[0]
m_values = []
for k in range(2 * n + 1):
inpl_multiplier = ((optimal_a) ** (2**k)) % N
if inpl_multiplier == 1:
continue
m_values.append(find_optimal_m(inpl_multiplier, N))
return proposals
def find_order(a, N, inpl_adder=None, mes_kwargs={}):
qg = QuantumModulus(N, inpl_adder)
qg[:] = 1
qpe_res = QuantumFloat(2 * qg.size + 1, exponent=-(2 * qg.size + 1))
h(qpe_res)
for i in range(len(qpe_res)):
with control(qpe_res[i]):
qg *= a
a = (a * a) % N
QFT(qpe_res, inv=True, inpl_adder=inpl_adder)
mes_res = qpe_res.get_measurement(**mes_kwargs)
return extract_order(mes_res, a, N)
def extract_order(mes_res, a, N):
collected_r_values = []
approximations = list(mes_res.keys())
try:
approximations.remove(0)
except ValueError:
pass
while True:
r_values = get_r_values(approximations.pop(0))
for r in r_values:
if (a**r) % N == 1:
return r
collected_r_values.append(r_values)
from itertools import product
for comb in product(*collected_r_values):
r = np.lcm.reduce(comb)
if (a**r) % N == 1:
return r
def get_r_values(approx):
rationals = continued_fraction_convergents(
continued_fraction_iterator(Rational(approx))
)
return [rat.q for rat in rationals if 1 < rat.q]
[docs]
def shors_alg(N, inpl_adder=None, mes_kwargs={}):
"""
Performs `Shor's factorization algorithm <https://arxiv.org/abs/quant-ph/9508027>`_ on a given integer N.
The adder used for factorization can be customized. To learn more about this feature, please read :ref:`QuantumModulus`
Parameters
----------
N : integer
The integer to be factored.
inpl_adder : callable, optional
A function that performs in-place addition. The default is None.
mes_kwargs : dict, optional
A dictionary of keyword arguments for :meth:`get_measurement <qrisp.QuantumVariable.get_measurement>`. This especially allows you to specify an execution backend. The default is {}.
Returns
-------
res : integer
A factor of N.
Examples
--------
We factor 65:
>>> from qrisp.shor import shors_alg
>>> shors_alg(65)
5
"""
if not N % 2:
return 2
a_proposals = find_optimal_a(N)
for a in a_proposals:
K = np.gcd(a, N)
if K != 1:
res = K
break
r = find_order(a, N, inpl_adder, mes_kwargs)
if r % 2:
continue
g = int(np.gcd(a ** (r // 2) + 1, N))
if g not in [N, 1]:
res = g
break
return res