Source code for qrisp.alg_primitives.switch_case
"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""
from qrisp.core.gate_application_functions import h
from qrisp.alg_primitives.qft import QFT
from qrisp.core import QuantumArray
from qrisp.qtypes import QuantumBool
from qrisp.environments import conjugate, control
from qrisp.alg_primitives import demux
[docs]
def qswitch(operand, case, case_function_list, method = "sequential"):
"""
Executes a switch - case statement distinguishing between a list of
given in-place functions.
Parameters
----------
operand : QuantumVariable
The quantum argument on which to execute the case function.
case : QuantumFloat
A QuantumFloat specifying which case function should be executed.
case_function_list : list[callable]
A list of functions, performing some in-place operation on ``operand``.
method : str, optional
The compilation method. Available are ``parallel`` and ``sequential``.
``parallel`` is exponentially fast but requires more temporary qubits.
The default is "sequential".
Examples
--------
We create some sample functions:
>>> from qrisp import *
>>> def f0(x): x += 1
>>> def f1(x): inpl_mult(x, 3, treat_overflow = False)
>>> def f2(x): pass
>>> def f3(x): h(x[1])
>>> case_function_list = [f0, f1, f2, f3]
Create operand and case variable
>>> operand = QuantumFloat(4)
>>> operand[:] = 1
>>> case = QuantumFloat(2)
>>> h(case)
Execute switch_case function
>>> qswitch(operand, case, case_function_list)
Simulate
>>> print(multi_measurement([case, operand]))
{(0, 2): 0.25, (1, 3): 0.25, (2, 1): 0.25, (3, 1): 0.125, (3, 3): 0.125}
"""
if method == "sequential":
for i in range(len(case_function_list)):
with i == case:
case_function_list[i](operand)
elif method == "parallel":
# Idea: Use demux function to move operand and enabling bool into QuantumArray
# to execute cases in parallel.
case_amount = len(case_function_list)
# This QuantumArray acts as an addressable QRAM via the demux function
enable = QuantumArray(qtype = QuantumBool(), shape = (case_amount,))
enable[0].flip()
qa = QuantumArray(qtype = operand, shape = ((case_amount,)))
with conjugate(demux)(operand, case, qa, parallelize_qc = True):
with conjugate(demux)(enable[0], case, enable, parallelize_qc = True):
for i in range(case_amount):
with control(enable[i]):
case_function_list[i](qa[i])
qa.delete()
enable[0].flip()
enable.delete()
else:
raise Exception("Don't know compile method {method} for switch-case structure.")