Source code for qrisp.alg_primitives.arithmetic.adders.fourier_adder

"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""

import numpy as np

from qrisp.alg_primitives import QFT
from qrisp.core.gate_application_functions import p, cz
from qrisp.environments import QuantumEnvironment, conjugate
from qrisp.circuit import Operation, PGate, QuantumCircuit


[docs] def fourier_adder(a, b, perform_QFT = True): """ In-place adder function based on `this paper <https://arxiv.org/abs/quant-ph/0410184>`__ Performs the addition :: b += a Parameters ---------- a : int or QuantumVariable or list[Qubit] The value that should be added. b : QuantumVariable or list[Qubit] The value that should be modified in the in-place addition. perform_QFT : bool, optional If set to ``False``, no QFT is executed. The default is ``True``. Examples -------- We add two integers: >>> from qrisp import QuantumFloat, fourier_adder >>> a = QuantumFloat(4) >>> b = QuantumFloat(4) >>> a[:] = 4 >>> b[:] = 5 >>> fourier_adder(a,b) >>> print(b) {9: 1.0} """ if perform_QFT: env = conjugate(QFT)(b, exec_swap = False) else: env = QuantumEnvironment() with env: b = list(b) b = b[::-1] if isinstance(a, int): for i in range(len(b)): p(a*np.pi*2**(1+i-len(b)), b[i]) else: if len(a) > len(b): raise Exception("Tried to add QuantumFloat of higher precision onto QuantumFloat of lower precision") phase_correction_a = np.zeros(len(a)) phase_correction_b = np.zeros(len(b)) for j in range(len(a)): for i in range(len(b)): if 1+j+i-len(b) >= 1: continue if 1+j+i-len(b) == 0: cz(a[j], b[i]) else: b[i].qs().append(QuasiRZZ(-np.pi*2**(1+j+i-len(b))/2), [a[j], b[i]]) phase_correction_a[j] += np.pi*2**(1+j+i-len(b))/2 phase_correction_b[i] += np.pi*2**(1+j+i-len(b))/2 for i in range(len(b)): if phase_correction_b[i]%(2*np.pi) != 0: p(phase_correction_b[i], b[i]) for i in range(len(a)): if phase_correction_a[i]%(2*np.pi) != 0: p(phase_correction_a[i], a[i])
class QuasiRZZ(Operation): def __init__(self, angle): qc = QuantumCircuit(2) qc.cx(qc.qubits[1], qc.qubits[0]) qc.p(angle, qc.qubits[0]) qc.cx(qc.qubits[1], qc.qubits[0]) Operation.__init__(self, "quasi_rzz", num_qubits = 2, definition = qc, params = [angle]) self.permeability = {0 : True, 1 : True} self.is_qfree = True def inverse(self): return QuasiRZZ(-self.params[0]) def control(self, num_ctrl_qubits=1, ctrl_state=-1, method=None): qc = QuantumCircuit(2 + num_ctrl_qubits) qc.cx(qc.qubits[-1], qc.qubits[-2]) qc.append(PGate(self.params[0]).control(num_ctrl_qubits, ctrl_state=ctrl_state, method=method), qc.qubits[:-1]) qc.cx(qc.qubits[-1], qc.qubits[-2]) res = Operation.control(self, num_ctrl_qubits, ctrl_state=ctrl_state, method=method) res.definition = qc return res