Source code for qrisp.alg_primitives.amplitude_amplification

"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""

[docs] def amplitude_amplification(args, state_function, oracle_function, kwargs_oracle={}, iter=1): r""" This method performs `quantum amplitude amplification <https://arxiv.org/abs/quant-ph/0005055>`_. The problem of quantum amplitude amplification is described as follows: * Given a unitary operator :math:`\mathcal{A}`, let :math:`\ket{\Psi}=\mathcal{A}\ket{0}`. * Write :math:`\ket{\Psi}=\ket{\Psi_1}+\ket{\Psi_0}` as a superposition of the orthogonal good and bad components of :math:`\ket{\Psi}`. * Enhance the probability :math:`a=\langle\Psi_1|\Psi_1\rangle` that a measurement of $\ket{\Psi}$ yields a good state. Let $\theta_a\in [0,\pi/2]$ such that $\sin^2(\theta_a)=a$. Then the amplitude amplification operator $\mathcal Q$ acts as .. math:: \mathcal Q^j\ket{\Psi}=\frac{1}{\sqrt{a}}\sin((2j+1)\theta_a)\ket{\Psi_1}+\frac{1}{\sqrt{1-a}}\cos((2j+1)\theta_a)\ket{\Psi_0}. Therefore, after $m$ iterations the probability of measuring a good state is $\sin^2((2m+1)\theta_a)$. Parameters ---------- args : QuantumVariable or list[QuantumVariable] The (list of) QuantumVariables which represent the state, the amplitude amplification is performed on. state_function : function A Python function preparing the state $\ket{\Psi}$. This function will receive the variables in the list ``args`` as arguments in the course of this algorithm. oracle_function : function A Python function tagging the good state $\ket{\Psi_1}$. This function will receive the variables in the list ``args`` as arguments in the course of this algorithm. kwargs_oracle : dict, optional A dictionary containing keyword arguments for the oracle. The default is {}. iter : int, optional The amount of amplitude amplification iterations to perform. The default is 1. Examples -------- We define a function that prepares the state :math:`\ket{\Psi}=\cos(\frac{\pi}{16})\ket{0}+\sin(\frac{\pi}{16})\ket{1}` and an oracle that tags the good state :math:`\ket{1}`. In this case, we have :math:`a=\sin^2(\frac{\pi}{16})\approx 0.19509`. :: from qrisp import z, ry, QuantumBool, amplitude_amplification import numpy as np def state_function(qb): ry(np.pi/8,qb) def oracle_function(qb): z(qb) qb = QuantumBool() state_function(qb) >>> qb.qs.statevector(decimals=5) 0.98079∣False⟩+0.19509∣True⟩ We can enhance the probability of measuring the good state with amplitude amplification: >>> amplitude_amplification([qb], state_function, oracle_function) >>> qb.qs.statevector(decimals=5) 0.83147*|False> + 0.55557*|True> >>> amplitude_amplification([qb], state_function, oracle_function) >>> qb.qs.statevector(decimals=5) 0.55557*|False> + 0.83147*|True> >>> amplitude_amplification([qb], state_function, oracle_function) >>> qb.qs.statevector(decimals=5) 0.19509*|False> + 0.98079*|True> """ from qrisp import merge, IterationEnvironment, recursive_qs_search from qrisp.grover import diffuser merge(args) qs = recursive_qs_search(args)[0] with IterationEnvironment(qs, iter): oracle_function(*args, **kwargs_oracle) diffuser(args, state_function=state_function)